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PREFACE

The text that the present "Commentary for Teachers" accompanies represents

a brave attempt to further the introduction of mbdern mathematics into the

secondaryschool curriculum. Except for isolated experiments, the subject of

matrices has not heretofore been taught at the hierschool level. The results

of these few isolated experiment," however, have been so rewarding and so success

ful that all teachers should have courage regarding the exciting possibilities in

this material. Here is some truly modern mathematics that is eminently useful

and that can be understood by all collegecapable boys and girls.

The text has been arranged so that individual chapters make separate units.

For the class that has little time for the subject, Chapter 1, which treats the

operations of multiplication ard addition, makes a unit. There is much to be

gained even from such a small unit, since in it the students will be introduced

to a meaningful example of noncommutative multiplication. It is assumed that .

the students have previously heard about the commutative, associate, and dis

tributive laws. Certainly an understanding of these laws should be a part of

their early training in algebra. But since these students have had little or

no eXperience with number systems other than those of the real and complex

numbers, they will perhaps not completely comprehend the full significance of

the laws. To demonstrate to the students a new number system in which the

commutative law does not hold is most worthwhile. Since the ideas of Chapter I

are simple and there is a great deal of manipulation, largely arithmetical,

the chapter will serve as an easy introduction to the more difficult ideas con

tained in subsequent chapters.

The next three chapters are quite independent of each other. Chapter 2 is

the most important from the mathematician's point of view. In this chapter, a

subset of matrices, the set of 2 x 2 matrices, is considered,in detail. Most

pupils who study secondary school mathematics complete their study believing

.that there is just one "algebra." Indeed, they do not know quite what "an

algebra" is. Through the study of the very neat algebraic system associated

with this subset of the 2 x 2 matrices, the concept of an algebra will be

understood much more clearly. The meaning of the important mathematical notion

of an inverse will also be more thoroughly comprehended. Best of all, the

logical aspects of the chapter are developed carefully and rigorously. It is

assumed that all students eatering the course will already have a considerable

ix
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knowledge of axiomatic systems, seined through the study of geometry. In this

chapter, axiomatic methods are applied to algebraic systems. There are many

proofs, and no statements are made unless supported by rigorous demonstration.

Chapter 2 undoubtedly contains more "mathematics" than Chapter 1.

In many algebra books used in courses commonly called "advanced algebra,"

reference is made to the use of determinants in the solution of linear equations.

Usually the subject is presented without mentioning matrices. In Chapter 3, it

is clearly seen that determinants are a small portion of a much more extensive

subject. The study of matrices adds greatly to our understanding and facility

in solving systems of linear equations and leads naturally toward more advanced

considerations in collegiate mathematics.

A shift in point of view is made in Chapter 4. In the study of sciences,

particularly physics, many students are already familiar with the idea of a

vector. In Chapter 4, a vector is introduced as an array of numbers. The

algebra of vectors is developed together with the geometric interpretation.

Chapter 4 is not dependent on either Chapter 2 or Chapter 3.

Chapter 5 should be studied only after Chapter 4 has been covered. It

advances rapidly in the study of transformations of the plane. This beautiful

basic application of matrix theory ties together much that the student has learned

concerning algebra, geometry, trigonometry, and functions, and thus it furnishes

a fitting capstone to his secondaryschool study of mathematics.

As an added teaser, however, a delightful set of "research exercises" has

been appended to point toward more exciting mathematics ahead:

The entire book can be studied in a halfyear course for collegecapable

students. This means that a large amount of extremely significant mathematics

will be met in a short space of time.

The text is flexible and can be adapted to various types of classes. For a

minimum course of one month, Chapter .1 can be studied. A longer course with a

class of able pupils could consist of Chapter 1 together with Chapter 2, or

Chapter 3, or Chapter 4. Indeed, Chapter 1 together with any combination of

Chapters 2, 3, and 4 constitutes a unit. As indicated above, Chapter 5 should

be studied'only in combination with Chapter 4. The four research exercises of

the Appendix are considerably dependent, for their full appreciation, on the

material in Chapter 2; they are quite independent of Chapters 3, 4, and 5.

A suggested time schedule is the following:

Chapter 1 2 weeks

Chapter 2 4 weeks

10



Chapter 3 2 weeks

Chapter 4 3 weeks

Chapter 5 3 weeks

Appendix 4 weeks

A considerable amount of collateral reading is recommended. This reading

has the purpose of broadening the students' understanding of the nature of

Mathematics. It is assumed that the class will already be familiar with many

of the notions of sets; if not, the first assignment of collateral reading should

be in this area. Heze are the titles of some books that, along with those listed

in the Bibliography on page 231 of the accompanying text, will be found useful:

I. Adler, "The New Mathematics," John Day Company, New York, 1958.

E. T. Bell, "Mathematics, Queen and Servant of Science," McGrawHill Book

Company, Inc., New York,.1951.

George A. W. Boehm, "The New World of Math," The Dial Press, New York, 1959.

W. W. Sawyer, "Mathematicians Delight," Penguin Books, Inc., Baltimore,

1957.

1 1
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Chapter 1

MATRIX OPERATIONS

1-1. Introduction

In the Introduction to Chapter 1, the text moves very slowly. If necessary,

you can handle all the material in this first section in one class period. This

is not a wise thing to do, however, and should be avoided if possible. In their

experience with mathematics, the students have become much more rigid than the

teacher might like to concede. One of the primary purposes of the book is to

give the students some awareness of the breadth and scope of mathematicJ. In

order to prepare them for the work to come, it is well to spend several days on

the Introduction. If the pupils have already had some experience in developing

a number system, so much the better. If they have not had this experience, it

would be wise to study the system of rational numbers a/b in terms of ordered

pairs (a,b) of integers, with b a counting number. There are two great

advantages to the orderedpair concept. The firsC is the traditional value:

The number system is extended logically as the postulates become less restrictive.

The second value is the development of the concept of an ordered pair being a

single entity, in preparation for handling the more advanced concept of an entire

matrix as an entity.

It is within the capacity of most students who study rigorous mathematics

in the twelfth grade to invent a number system. Once the pupil understands the

relationships between definitions, postulates, and theorems, he can devise his

own number system. To be significant, however, the number system should satisfy

two very important criteria. The first is that the postulates prove fruitful,

that from the set of postulates alone many theorems can be developed. The

second is that the mathematical system, when developed, prove useful in having

interesting applications. If the study of mathematics can be made an adventure,

the students will be eager in their learning.

A rectangular array of numbers is called a matrix. In this text, we shall

enclose each ma.trix in a pair of square brackets [ . There is no universal

agreement for this convention. Some authors use ( ), and others use ( 3.

Note that a single number, such as 3, enclosed in square brackets, denotes a

matrix. As the student develops mathematical sophistication, he will understand

that the notions inherent'in the symbol 3 and those inherent in the symbol

[3] are different.

Historically, as noted by C. C. MacDuffee in "What Is a Matrix?",

12



2

American Mathematical Monthly, vol. 50 (1943), pp. 360-365, the term matrix

was introduced into mathematics in 1850 by J. J. Sylvester: "We commence with

an oblong arrangement of terms consisting of m lines and n columns. This

will not in itself represent a determinant, but is as it were, a Matrix out

of which we may form systems of determinants by fixing upon a number p, and

selecting p lines and p columns, the squares corresponding to which may be

termed determinants of the pth order."

W. R. Hamilton used matrix algebra in linear and vector

functions. In 1855, Arthur Cayley referr ic as being very convenient

notation for the theory of linear equations," and added the casual comment that

"there are surely many things to be said about this theory of matrices." In

1858, he returned to the systematic development of their properties, as here

presented in Chapter 1.

1.-2. The Order of a Matrix

In this text, we shall speak of the "order" of a matrix. Another frequently

used term is "dimension." The Tlord "dimension" in many ways is a more natural

term, since we are speaking of two quantigies the number of rows and the number

of columns. However, it is well to reserve the word'"dimension" for less

technical discussions. The word "order" will be given a unique mathematical

meaning that will facilitate better communicatlon between instructor and student

once the idea is understood. Thereafter, the student can use "dimension" with

out being involved in technical uses of the word.

In referring to a square matrix, it is not necessary to designate two

numbers. For instance, in referring to a 2 x 2 square matrix, it is sufficient

to speak of a square matrix of order 2.

Little attention need be paid in this chapter to the concept of a row natrix

or a row vector (see "The Mathematics Teacher," January) 1960). The subject of

vectors is explored at length in Chapters 4 and 5. At this time, it is sufficient

merely to introduce the term. It is important, however, to differentiate between

a point having coordinates such as (2, 3) and a row vector [2 3] . Although

there is a geometrical representation of row vectors that involves points, there

are two distinct concepts to be considered. Both concepts are valuable, and an

effort should be made to understand the difference between them. It is worth

noting at this point that a very interesting short course can be given that

would involve Chapter 1, Chapter 4, and possibly Chapter 5.

[pages 3-6]



3

If the class has not had previous experience with subscript notation, a

considerable number of exercises should be devoted to drill in this terminology

since it will be encountered frequently throughout the book. The two letters

i and j can be considered as variables of which the range must be designated.

The usual range for i is (1,2,...,m), which means that i takes on each

value between 1 and m, inclusive. The usual range for j is (1,2,...,n).

Thus, if m equals 4 and n equals 6, the notation a
ij

is a general

representation for each one of twentyfour entries. Note that it is important

to think of a
ij

as representing each entry separatel,, not " -ntries to

gether. Attention should be focused on one entry at a time, ancl in this con

nection there should not be consideration of all entries at (,,,a time in a kind

of amorphous mass.

There are three rather common notat.:.ons for the transpose of a matrix A.

These are AT, At, and A'. Although the last notation may be the most common,

it has not been used in this book since the prime notation does not impress the

consciousness as much as the others. For students In secondary school, it is

safer to use A
T

or A
t

. Many theorems involving the transpose are developed

later, in Chapter 2; they have been introduced here for the simple reason that

they afford convenient material for practice in dealing with matrices and their

elements.

To help the class further to familiarize itself with rows, columns, entries,

etc., you might have the members engage in a little game involving such a matrix

as

CI C2 C3

1 3 2

R2
I 3 2

Positive entries represent gains fa; the first player and losses for the second,

while negative entries represent gains for the second player and losses for the

first.

To play the game, the first player writes the number of a row on his paper,

and the second player writes the number of a column. When the numbers are

announced, the entry at the intersection of the chosen row and column is marked

down as the score for that play of the game. Thus if the choices are R2 and

C
1,

then the score is 1. At the end of 10 plays, the scores are added and

[pages 34]
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the first player wins or loses according as the sum is positive or negative.

Simple as such matrix games are, they are representative of the competitive

situations that exist, for example, in business and war. In the late 1920's,

they led the great modern mathematician John von Neumann (1903-1957) to the

founding of a new branch of mathematics, the Theory of Games; see the delightful

book by J. D. Williams, The Complete Strategyst, McGraw-Hill Book Company, Inc.,

New York, 1954. This theory has had a great impact on economics and other

sciences.

1. (a) The students will likely u, As in examples from newspapers, magazines,

and books. These might involve the stock market, health statistics,

mileages, agricultural production, armaments, populations, etc.

(b) The order m X n is the number m of horizontal rows, followed by

the number n of vertical columns. For example, the matrix

a b

[c d

e f

ir of order 3 X 2.

(c) Alternative methods involve sentences, graphs, etc.

2. (a) For example: [17 62 124] .

(b) Such a vector might be used in organizing games, etc. More extensive

information of a similar sort is employed, for example, in identifying

people by their finger prints.

3. (a) 4 x 5. (b) 0, 3, -.7, 8, 7.

(d) -7. (e) 4.

(8)

1

2

3

4
5

8 -1 0

10 -3 3

12 -5 -.7

14 6 8

16 3 7

15

[pages 3-6]
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(f) 0.
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4. (a) 4 x 4. (b) 0, 0, 1, 0. (c) 0, 0, 1, 0.

(d) 0. (e) For i = j. (f) For i 0 j.

1 0 '0

(g) ist = B = 0

[

1 0

0 0 1

5. Examples:

(a)

[,8 1 6

3 5 7

4 9 2

.

1 1

2 3

(b) 0 .6 0 .-

2

3 2
.15

1 2 3 4 5

6 7 8 9 10

(c) 1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

6. (a) 4. (b) 12. (c) n
2

. (d) mn.

1-3. Equality of Matrmces

It should be nozerl, that no postulates have been assumed for tre "equals"

relationship. The emmzvalence properties for equality (i.e., the

symmetric, and transItive properties) are inherent in the giver le, nition of

equality of matrices. If these properties have been discussed previously, it

can be demonstrated that they are satisfied by the definition of equality of

matrices; otherwise they probably should not be stressed at this time. It is

very likely that postulates involving equality and operations, such as "if equals

are added to equals, the sums are equal," will appear in student ,proofs invhkving

matrices. This point=tght be discussed when an opportunity arizen naturally

in a classroom disc.osin.

Note that [0 01 does not equal [0] . Under our definition, two

matrices must havesame order if they are to be equal. Since these two

matrices are not ni e same order, they cannot be equal.

[pages 6,83
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1. (a) x = 1, y = 1.

(b) x = 1, y = 2.

(c) The four equations,

Exercises 1-3

x
2

1, y = 1,

2
x = 1, y = 1,

are consistent. The unique solution is x = 1, y = 1.

2. If matrix A = matrix B, then the ma,_cices are of the same order and

their corresponding entries Le equal. Thus a
ij

= b
ij

for all permissible

i, J. If B = C, then also b.. = c . Hence a.. = c. for all permis
13 ij 13 1J

sible i, j, so that A = C by Definition 1-2.

[1 4 7

3 6 91

4.

1 2

1 3
1 5
0 1

1 2
5 5

5' 1.-5 31
0 1

Addition of Matrfes

In this section, operalion of addition is developed slowly and care

fully.

Stress the fact Et*.t. the definition of addition does not give a rule by

which matrices of diffelut cders could be added. Given tftalproblem: Find

the sum of the two quan.:7.1.

1
[ 1 0

3 1] '

i 1

5 2 and
0 6

1. 7

[pages 8-15]
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some students will be tempted to enlarge the second matrix by adding a row and

a column of zeros. It should be stressed that this produces an altogether

different matrix. Under our definition of addition, the sum of the two matrices

given above is undefined.

The commutative law and the associative law for the addition of matrices

should not be belabored at this time. It is quite obvious that the addition of

matrices does possess these two properties. When multiplication is considered,

then the commutative property for the addition of matrices can be put in sharp

contrast with the failure of the commutative property for the multiplication of

matrices.

Although many students will be inclined to pass over the three theorems

at the end of this section by dismissing them as 'obvious,' the proofs involve

a considerable amount of worthwhile algebra. Proofs of these theorems will

sharpen the understanding of the relationships between definitions, postulates,

and theorems. (See Exercises 11 through 14 in this section.)

Exercises 1-4

1. The single matrix equation is equivalent to the six realnumber equations,

or

x + 3 = 0,

a + 1 = 3,

b 3 = 2b + 4,

x = 3,

a = 4,

b = 7,

2y 8 = 6,

4x + 6= 2x,

3b = 21,

y = 1,

x = 3,

b = 7,

so that the equations are consistent and haw- a unique solution. Two of

the equations are redundancies.

4. (a) 8 + 2 = 10.

4
5 21

3.
1 4

T. 45

(b) 1 + 8 = 9. (c) 4 + 4 = 8..

18

[pages 9-15)
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4.

5.

6.

7.

8.

9.

(a)

(b)

(c)

(a)

(b)

(c)

(d)

(e)

3

2

1

5

1

0

0

-9

[4

8

0

[0

0

1 1

3 4

7 1

6 7

1 11

0 0

1 01
0 1

No. You

Yes.

Same as

2 -2
9

-4

0 0

0 0]
0 -1

A + B

(A +B)

A + (B

A - B

(A - B)

.

cannot

first matrix.

3] .

3

.

3 1

= [6 2]
5 7

+ C =

+ C) =

= r0 i 36]

5 5

+ C =

add matrices

.

3 1

1.6 21 +
5 7

1 2

[3 4] 4-

5 6

-1 3

[ 0 6] +
5 5

of different orders.

4 2

71 01 = [7 2

-2 -4 3 3

6 1 7 3

4 -2] = [7 2]

-2 -3 3 3

4 2 3

1 01 = [1

-2 -4 3

.

5

6] .

1

1 -3
B - A = 0 -6] .

-5 -5

10. (a) The associative law for addition.

(b) A - B = - (B - A).

11. The enry in the t-th row and 1-th column of -(-A) is -(-aij) = aij

by the laws of real numbers. But this is the entry of A in the t-th

[pages 15,17)
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row and jth column; and if two matrices have equal entries at all cor

responding positions, they are equal.

12. Since 0 = 0, every entry of 0 is equal to the corresponding entry of

0, so that the matrices are equal.

13. Since

(aij + bij) = aij bij

= (a..) + (b
ij

),

the corresponding entries of .(A B) and (A) + (B) are equal, so

that the matrices also are equal.

14. To prove that At + Bt = (A + B)t, we simply have to show that the entries

in the -same rou and colUmn are equal. Let

Then

Now

But

Hence

or

But

SO

A B = C.

a.. = a.
ji

, b. = b
ij

cij = cji .

c
ji ij

c
t

= a.. + b
t

,

ij ij ij

Ct = At + Bt.

C = A + B,

[page 17]
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and therefore

C
t
= (A + B)

t
,

(A + B)
t
= At + Bt .

1-5. Addition of Matrices (Concluded)

Insofar as only addition and subtraction are involved, the algebra of

matrices is exactly like the ordinary algebra of numbers. Theis statement is

underlined in the text. In order to provid .:,! a sharp parallel, the introduction

to the subject of groups may begin here. The real numbers, under the operation

of addition, form a group; that is, they satisfy the postulates of closure,

associativity, identity, and inverse. Also this group is an abelian group

since the commutative property holds for it. The set of all 2 x 2 matrices,

such as

12 31 [-1 2 1 0 0 0

4 5 0 11 ' [01] ' [0 01

forms a group under the operation of addition. Also the set of all 3 x 3

matrices forms a group under addition. Through the use of the group concept,

the structure of the mathematics can be spotlighted. In Chapter 2, the group

concept is developed. Mention of the concept and a brief discussion at this

time will serve as an introduction to the later formal consideration.

In order to solve the matrix equation

X + A = B,

we add the additive inverse of A, namely A, to both sides of the equation.

Once again students'will be tempted to say, "Transpose," or, "Put A on the

other side and change signs." Both practices should be avoided, since they

diminish understanding. Because the inverse has been emphasized considerably,

it is doubtful if the student will depend on these mechanical conveniences. It

is important to emphasize and drill the notion of an additive inverse, that is,

a matrix that 'neutralizes' the result of,addition:

21
(pages 17, 18



1. X

2.X

3.

4.5.
=

c
1

c2

c
3

Y1Y1

1 0 -I

0 1

2 1

3 2434
x
2 3]

=

1
x
2Y2

1
x
2

Y2

2

3

1

1

1

[

[-6

-
[-3

5

4

X

1

0 ]

0

0

1

2

[21

1

5
01

+ A

0

1

0

3

4]

-1

+

1

0

0

(A) = X, A

EXU7- ses 1-5

+

1

(A) =

12 2

1

O.

1] .

1

1

+

5

r3

1

4

5

1

2 1 1

313.
3 3 4

0 2] =

0

5]

4]

[

hence

xl = 5, x2 = 7, yl = 1, Y2 = 1.

6. To prove that

(A + C) (A + B) = B,

note that

(aij + cij) (aij + bij) = + cij aij bi .bij

U.

7. No. Although both members of the equation are equal to zero matrices, the

orders are not the' same.

2 2
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1-6. MUltiplication of a Matrix by a Number

In many texts, the multiplication of a matrix by a number is called multi-

plication by a scalar. "Scalar" is a term that was introduced in 1853 and was

associated with quaternions. Fundamentally, the word "scalar" means a quantity

that can be represented on a scale, that is, a real number. The word scalar

may well have been introduced to emphasize the two different number systems. In

the theory of vectors, "scalar" is used to denote a magnitude in contrast to a

vector, which has both magnitude and direction.

It is very important to note that the product of a matrix and a number is a

matri3c7.of the same order as the original matrix.

The fundamental properties of multiplication by a number, or by a "scalar,"

are stated.in Theorem 1-4. These properties are worth emphasizing, since they

are important in the definition of an algebra.

1. (a) 2A - B + C = 2
[2

[ 3

6

(b) 3A - 4B - 2C =

Exercises 1-6

1

51

-1
5 -

[ 7

0

-1
1 -31 [3
0 4 6

0

9

1 -11
-1 81

-12 - 10 3 - 0 + 2 -9 - 20 -0]
3 - 24 - 14 0 - 36 - 16 12 + 4 + 2

[-16 5 -29
-35 -52 -18]

(c) 7A - 2(B - C) =
14 7 21
7 0 28 2

[:1
1 g

[14 7 -21] [-4 2 10]

7 0 28 -2 2 0

5 -31
9 -2 28

(d) 3(A - 2B + 3C) = 3A - 6B +9C

[ 6 3 -9] [18 0 30] 45 -9 0

3 0 12 36 54 -6
[

63 72 -9
]

[33 -6 -39
30 18 9]

[pages 19,-23]
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2. (a) 2A B + C = 6
3

5

11
5

11
8

(b) 3A 6B + 9C =

.

24 24
33 6 39
30 18 9

(c) 7A 2(B C) = 18
9

16 16
5 312 28

[24
24 24

(d) 3(A 2B -I- 3C) = 33 6 39
30 18 9

13. (X + A) = 3(X + (2X + B)) + C,
2

X + A = 6(X + (2X + B)) + 2C,

X + A = 6X + 6(2X + B) + 2C,

X + A = 6X + 12X + 6B + 2C,

X 18X =

X =

X =
17

X =

A

(A

24
17

26
17

49
17

+ 6B + 2C,

6B 2C)

24 24 24
26 3 3349 70

24 24
17 17
3 33
17 17

70 12
17 17

,

12

14. 2(X + B) = 3 (x + y (X + A)) +

32X + 2B = 3X + X + 3 A + C,
2 2

4X + 4B = 6X + 3X + 3A + 2C,

5X = 3A 4B + 2C,

1
A = ("3A + 4B 2C) ,

[pages 23, 24)
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3.4

x =

-2 -2 - 2

-4 -1 29

7 20 -14

-2 -2 -2
5 3 3

-4 -1 29

5 5 5

7 -14- 4
5 -5-

5. To prove that x(yA) = (xy)A: Note that, for real numbers, we have

x(yaij) = xyaij = (xy)aij.

Then apply the definition (Definition 1-2) of matrix equality.

6. To prove that (x + y)A = xA + yA: Note that, for real numbers, we have

(x + y)a
ij

= xa
ij

+ ya
ij.

Then apply the definition (Definition 1-2) of matrix equality.

1-7. Multiplication of Matrices

Many articles and textbooks dealing with matrices describe the operation

of multiplication first. It is more interesting than addition and sets a

pattern that makes addition seem easy, even dull. In starting addition,

which is a most conventional operation, the student is likely td be lead to the

easy conclusion that multiplication proceeds in the same simple manner namely

that two matrices of the same order are multiplied together element by corres-

ponding element. That this is not so must be emphasized from the start. In

the text, a "practical" problem is presenLed, one involving television tubes,

speakers, and models. A discussion of the problem will help motivate the

unusual pattern for multiplication.

If additional motivation is desired at this point, you might tell the class

about operations research, a form of scientific work that has grown rapidly

during and since the Second World War. In it, scientific methods are applied

to the running of businesses, governments, etc., in order to hold production

costs to a minimum, to get maximum use from limited resources', etc. An im-

portant tool in operations research is linear programming, a new branch of

mathematics that makes extensive use of matrices.

25
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Suppose, for instance, that distances in miles from branch automobile

factories F F
2'

F
3

to towns T T
2'

T
3'

T
4

are given by the entries in

the following table (matrix) of distances:

Tl T2 T3 T4

F
1

750 200 300 100

F
2

400 500 250 500

F
3

600 800 400 700

The factories prod,..,..e a total of 1000 identical cars per day:

Production Table

Factory
No. of Cars
Produced

F
1

250

F
2

350

F
3

400

Total 1000

and the total daily demand for the cars by the towns is as follows:

Requirement Table

Town
No. of

Cars Required

T
1

400

'T 200

T
3

300

T
4

100

Total 1000

If it costs $1 to ship a car 10 miles, how can the demand be met at minimum

total transportation cost? 2 6

[pages 24-32]
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In the mathematical formulation of the foregoing problem, you have a fine

opportunity to drill the class on subscripts and in the use of the E notation.

Let x denote the number of cars shipped daily from factory F
i

to town T

Then from the production table you see that

x11 F n12 + x13.1- x14 250'

x21 + x22 + x23 + x24 = 350,

x
31

+ x
32

+ x
33

+ x
34

= 400.

These equations can be written more cowactly as

4

E x = 250,

j=1
lj

4

E x,. = 350,

j=1 4i

4

E x14 = 400.
j=1

Similarly, from the demand table you must have

3

E xil = 400,

i=1

3

x
i2

= 200,

i=1

3

x
i3

= 300,
i=1

3

xi4 = 100.

(1)

(2)

Now from the table of distances, and from the fact that it costs $1 to ship a

car 10 miles, the total cost is

[pages 24-32]
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C 75x
11

+ 20x
12

+ 30x
13

+ 10x
14'

+ 40x
21

+ 50x
22

+ 25x
23

+ 50x
24'

+ 60x
31

+80x
32

+ 40x
33

+ 70x
34'

The problem is to determine nonnegative integers xij, subject to the

constraints (1) and (2), in such a way as to minimize the cost C. This is a

formidable problem for hand computation, but the class may be interested to

know that on an electronic computing machine the methods of linear programTing

would get the answer quite quickly.

Here is a simpler problem of a similar sort that involves matrix multi

plication:

A chicken rancher found that certain brands of feed contain the following

amounts of vitamins per measure:

Brand I Brand II ,Brand III

Vitamin A 150 1000 300

Vitamin B 200 800 300

Vitamin C 700 200 200

Vitamin D 700 800 100 .

For a feeding of his flock, the total minimum vitamin requirements were known

to be

Vitamin A

Vitamin B

Vitamin C

Vitamin D

Feeding

40,000

40,000

30,000

40,000

He actually fed the flock in accordance with the following formula showing

measures per feeding:

Feeding

1

Brand III 40

[pages i4-32]
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Why did the chickens fail to develop as they should?

When you multiply the vitaminperbrand matrix by the brandPerfeeding

matrix thdt he used, you get the actual vitaminperfeeding matrix:

150
200

700
700

1000
800
200
800

300
300
200

100

200 11

40

=

45i000
40,000
28,000
42,000

When this is compared with the required vitaminperfeeding matrix, it is found

that the chickens suffered from a slight vitamin C deficiency.

You might now ask the class to adjust the formula in such a way as to get

an adequate feeding. For example, it will be found that the formula

Feeding-

Brand I

Brand II 30

Brand III 38

is adequate. You might also ask for a computation of the 1 x 1 costper

feeding matrix for various adequate and inadequate feeding formulas, given

that the cos:;perbrand matrix, measured in cents per measure, is

Brand I Brand II Brand III

Cost [10 30 20] .

Other applied problena involving the multiplication of matrices can be

found in the book by Kemeny, Snell, and Thompson listed in the Bibliography on

page 231 of the text.

There is another kind of problem that can be presented to aid.understanding,

a problem familiar to students who have studied a considerable amount of trigo

nometry and analytic geometry. The notion of a mapping occurs early in a

student's mathematical training. The concept is used in the discussion of a

function. In analytic geometry, the idea is extended when a change of axes is

discussed. The formulas for translation are

x' = x h,

y' = y k.

[pages 24-32]
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The more difficult cAse of rotation of axes involves the formulas

x I x cos + y sin 0,

y' = x sin 9 + y coP O.

trier two mmupirTre and B that te p.t.:77:med in =be order ftzzt B,

-..7.11.en A. Let us de-7.7,f? f-t.' mappings as follov-

B:

x' = c
1
x + c y,

y' = dix + d2y;

x" = a
1
x' -4 a

2
y'

A:

y" = blx' b2y'.

To obtain the product mapping AB, we first perform the mapping B and then

the mapping A; this gives

x" = + c2y) + a2(d1x + d2y), ,

y" = b1(t1x + c2y) + b2(d1x + d2y)

and then, by rearranging terms,

x" = (a1c1 a2d1)x + (a1c2 + a2d2)y,

y" = (b1c1 + b2d1)x + (b1c2 + b2d2)y.

If the two original coefficient matrices are placed in juxtaposition,

bl b2 dl d2

the "row by column" naturesof the "product" (AB) coefficients can readily be,

seen. It can easily be shown also that AB 0 BA. You might tell your class

that Cayley (1821-1895), the inventor of matrices, proceeded along such a path

in his original work on linear transformations in 1858. He was preceded tn,the

study of the algebra of rotations in space by Hamilton (1805-1865).

[pages 24-32]

30



20

Once the mechnmics Imultication are introduced, it is important

continually to stmas t "tow by column." Also, it is most helpful to

retain in mind .the

a
12

a
13

a
22

a
23

a32 a33

The subscripts identify_:: roh 1 column to be multiplied together in order

to obtain a particular

The " notation' 6.6.,,y.fetill that the students shoult.z:be given consider-

able practice with it. -t. ct-J=Lcompact notation, the proof of some theorems

becomes very unwieldy.

Through the example; 1 :section and through the exercises at the end

of the section, many stnc_,It-s ei!uzzLd develop a suspicion that this multiplication

is quite different from ml:,ztmlication of real numbers. Unless they read

ahead of the assignment, i dhubtful if they will speak of the noncommutativity

or the divisors of zero. a. genius such as Hamilton had to face the problem

for years before he would Ltdt that AB does not always equal BA: The learn- .

ing process can be made mcre wmiting kf the secret is not immediately revealed

to the students and they art. e.11owed to work out their own discovery.

Only about half of the multiplications in Exercises 1-7-4 and 1-7-6 should

be assigned to the average

1. (a) 2 X 3.

(b) 3 X 3.

(c) 2 X 2.

(d) 4 x 3.

2. (a) [1.1 + 2.2 + 3.3 +

(b) 1 2 3 41
2 4

[

6

3 6 9 12

4 8 12 16

Exercises 17-7

(e) 3 x 2.

(f) 3 X 3.

(g) 4 X 3.

(h) 3 X 3.

= [30] .

31

[pages 24-33.]
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(c) + 18 + 12 4 + 3 + 201 38 27
0 -2 - 2 + 0 -16 -41

[

(d) 8 - 2 12 - 4
12 - 1 18 - 2
6 - 5 9 - 10

16 + 0 6 8 16
24 + 0 = 11 16 24
12 + 0 1-1 12

(e)
[4 + 0 8 + 4 12 - 2 16 + 121 [4 12 10 28
1 + 0 2 + 6 3 - 3 4 + 18 ] 1 8 0 22]

The multiplication

(f)
2 -1 6

1 2 3 41
3

t4 21 is impossible, since the first mar444.
1

2 x 4 and the second is 2 x 2.

3. (a) 5
5

1

[01 [2 -2 541

-11
(b) 15 -1.1 [0 1 2.1

2

5
(c) 2 4-]

1

= { 0 0 01 = 0 0 01 .

2 - 2 4 10 -10 20

10 -10 20 .50 -50 100

= 15 0 -1 -21 = LZ) -15 -301 .
0 2 4 0 30 60

-1 -2 0 -15 -30

-11- [4 -5 6] -.1[
2

= 5 {10 - 0 + 4] - [-4 + 5 + 12]

= 5 [14] - [13]

= [70] - [13]

= [57].

-1
+ [0 1 2] -1 = [10 - 0 + 4] + [0 - 1 + 4] = [17j.

2

4.

(d)

(e)

1)

(a)

[2 -2

{ 6-1

[2 -1

[6
2

4]

[2

6]

4
01

[

-1

5
0
1

6]

f.:'
_:.1

12 -6 36
= _2 -16 .

= [12 - 1 - 61 = [5] .

3 2

(page 33)
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(b)

,

(c)

X3

y2 y3

z2 z3

2r.,, 2r
3

293

2t3

(d) a1 ala2

"-a2b1 a 2 b 2

a3c2

(e) 0 0 0

.b1y 1
b1 y

2
b1 y

3

0 0

(f)
12 1 _1

2 2

1 1

(g) 4 7 4
1 2 1

1, 3 1

1
8 0

-1
2

1

1
21

f
I. 7

1
9

[3-1

-8[1

8
14

1

6. (a) 7 0 4
13 0 7
19 0 .10

(b) 2- -, 1 12 2 22 2 --5

I.

7
(C) 1_22 2 3 1

2 3
1-3

(d) 41 11 18
20 Z) 33 .

.-29 n 48
[pages 33, 34]
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(
e
.

(
g
)

(
h
)

(
j
)

I
f

-
1
1

-
2
0

-
2
9

1 2

4 5

7 6

1 2

4 5

7 E

-

7
-
1
3

-
1
9

[
[
3
0
6
6

1
0
2

3
0
6
6

1
0
2

[
1
.
1

:o
9

3
9

3
6
9

..2
s.:

I
i
i
3
1

:
2
6

3
6
3
1

/
2
6

1
8

3
3
A
s

-

-
1

-
3

0
1

1 1

0 1

-
1

0
[
-
2
-
2
'

-
2

_
.
1
4
7

1
2

=
2
2
2

3
[

-
3

2 3

5 6

8 9

4
2
1 9,6
1
3
0

4
.
2
.
9
6

1
5
0

I
t
h
e
n

A
I = i
L

B
I = B
,

8
.

A
B = I C
A

B
)

t
-

B
t = 1
7
. ,

A
t =

_

- 61 -

9
.

I
t

i
s

- .? 5

= -
1
3

2
1

5
.-
2
1

-7/

-

5 3

1
1

9

-
1
7 -

1
5

1

-
-

5 -
2 3

-
2 = 1
1 -
2

9

-
5

1--/-7

-
2

1
5

0 -
2

3 -
3

-
4
0

-
41 {

4
a
.

5
7
6

6
8
4

= 1
0
E
7
:

.
1
3
0
5

1
5
4
8

1
6
5
_
6

2
0
3
4

2
4
1
2

{
1 0 0

I = 0 1 0

,0 0 1

B
t
,

6

s
o

(C
A

B
)=

=
-

(
A
I
)
(
I
)

= A
I Z
i

A
,

23

3
0

3
3

4
0

0 3 -
2

2 1
0
4

1
2
8

1
5
0

.

(
(
A
I
)
I
)
.
r
.

A
.

:
t
h
e

-c13E
-.0.1-part,

m
at

r
-

..7.-..--=

[
2 3

5
] 1 X 3 '

4

11:
:
l
e

parts-pe..allassem
iE

r

m
a
t
r
i
x

= 3 5

[
7
[
2t
h
e

s
u
b
a
s
s
e
m
b
1
y
-
p
e
r
-
m
o
d
e
1

m
a
t
r
i
x

= 3
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Then

and the model-per-,aay matrix =
7, 8 8

3 4 5

3 5 6 3x3

the parts-per-model matrix = 3 5
3 4 5

7 2

IT'

a 13
21 23 31

20 15 24

and the coat-per-dey matrix

8 13 7 8 8

[ 2 3 5] 21 23 31

I;

4 5

20 15 24 5 6

7 a Es-

= [185 ILO 239] 3 14 31
3 6

[2492_3315 3714]

1-6. Properties of Mstrix MUlvialication

Now that =he definition of.11atzlx multiplication has been :given dts

properties must.ba revealed, buz 1Lowly.

Although AB 0 B in genez.i, there are many illustrations Where AE = BA.

The class can be-put to work A1sywoFering examples. A .eammest cambe Aavised 7mdth

a.prize to the:atudent who AelEs .111=he let:gest number ofilluaarat=ons.:.

A similar: =intua.,..csas. aeaszabIltheEaround divisors of ze=a, 7Rho =an

bring in theaargestzruth.===:n1:121ustrations. of AB = 0 when A 0. and'

B 0 0?

Although same texts: umaTthasamenatation for the-real number-0 anctithe

Matrix 0, thi&alstinction:shoUld be emphasized, particularly atAthe-beginning,,

since it emphasizes tmo systems, the real numbers and the matrices:.
. -

Only abouit half:L-3f the miultiplications in gXereises 1, 2, and 513hould be

assigned to the average class.

35
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Exercises 1-8

1. (a) AB =

(c) (AB)A

(e) (BA)B

(g) A(AB)

(i) ((AB)A)B

3 -2
2. (a) 5 6 -5

8 9

-1 2

-1 4

0 3 6

(c) - 6 0 6

1

-12 -3 6

(d)

5 6

11 14

1-1 2

0 2

[-3 10

-7 22

[-1 6

-3 14

(b)

(d)

(f)

(h)

(b)

-1

1 2
BA =

L2 2 I '

(BA)A
7 10[
8 12 '

2
B (Bk

[--3 101
((BA)A)B -4 12

5 6

-2 0

-72 -90 -108
72 90 108

- 6 - 9 - 12'

-6 6
(e) 6 6 -6 (f) 4

-1 0 1 2

36

(8) 81
126

42 -
96 - 81
150 -126

(ii)

[-90
910

- 3

3 6 -3
0 6 0

I

1.-3 6 3

3. AI = IA = A, BI = IB .= B, (AI)B = All =

4. (a) (A + B) (A + B)
[ 2

1 -41 I 1r;11.2 11

0 7._ it 3

-T 7 'I
2 1. -1,_
A a r='

-

2 1 0 1_ 0
B =

1 2. 1 2

5 6 1 ,
1 t

-LOB 90
LIE -90

-- 12 9

2 3 -2
5 6 -5 i
8 9 -8 1

[ '6 15
.3 - 61

_01- -77:7

11 0 1

3 4 1, '

3

2AB = 2
[1 -9 [1 0] -[1) 2T
0 z 1 2 .2 4

=
[ 0

4
-41
8

Ipage 403
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A2- B2 [ 1 + 0 + 1 3 4 + 01
0 + 4 + 3 4 + 8 + 4

Therefore, A2 + 2AB + B2 0 (A + B)(A + B).

(b) (A + B)(A B)

A2 B2 =

2[1

1[0

11
4

31
4

{ 0 11 0

[1
3

01
4

Therefore, A2 B2 0 (A + B)(A B).

s.
01 02 02 00 01 04 001

O 0 3 0 0 3 0 0 9

[2 71[ 4 3

7 16 r 6

1 21
4 1 '

6
15 I

[03 03 { 1 2
I ° 4 1]

2)

1 0 0 1 0 0 1 0 0

= 0 2 0 0 4 0 = 0 8 0

O 0 3 0 0 9 O 0 27
A3 = A(A

1

[

B2 = [ 2
0 0 2 0 0 4 0 0

0 2 0 0 2 0 1 = {0 4 0

O 0 2 0 0 2 0 0 41

B = B(B3 2 ) zn

2 0 0 4 0 0 8 0 0

0 2 0 0 4 0 = 0 8 0

O 0 2 0 0 4

[1
O 0 8

[

AB3 =
1 0 0 8 0 0 8 0 0

0 2 0 0 8 0 I = 0 16 01 ,

O 0 3 0 0 8 O 0 24
I.

A2B

1 0 0 2 0 0 2 0 0

= 0 4 0 0 2 0 = 0 8 0 .

O 0 9 0 0 2

[

O 0 18
[

.,

6 . 0 1 0 , 001 , 1 0 0 , 0 1 0 ,

100
001 0 1 0

100 G 1-, 0

0 0 1 . 100
001 .

0 0
0 1 0 i , 0 ... 01 , [0 0 -11 , _.i. 0 01 .

0 0 ...1

-1. 0 0

0 0 ._.1 0 -1 0

1 0 0 0 ...1 0

0 0 1

There are many more.

7 A
2 0 .0 + 0 .1 0 .0 + 0 .0 0 01

. = = 0.
1.0 + 0 .1 1.0 + 0 .0 0 0

Any 2 x 2 matrix that has an arbitrary entry at any one of die 4 positions

[pages 40, La]
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while the other 3 entries are zero will satisfy this equation; thus, if

0 0] ' 0.0 + 00 0x + 0.0
1

[0 0] -A =
[0 x then A.2 [0.0 + x.0 0.x + x.0 0 0

= O.

Also, among others, A =
[22: 2:c}

satisfies ,the equation A
2
= 0.

(See Exercise 1-9-6.)

8. A gl 0AA = A2 = [0 g g AA2 = A3 = g

.0 1 0 1 0 0 0 0 0

1-9. Properties of Matrix Mnitiplication (Concluded)

It should be emphasized that examples, no matter how numerous, do not prove

a general law concerning an infinitude of cases. Although the text has many

examples illustrating the associative law, the right-hand distributive law, and

the left-hand distributive law, proofs are still necessary if we are to state,

"We have proved the law." The proofs, which involve the summation or sigma

notation, are rather difficult and may be beyond some classes. Certainly, the

theorems can be demonstrated on an intuitive basis.

There is no difficulty in presenting the ideas associated with the zero

matrices,

and the unit matrices,

[0 0]
, g g g ,

0 0 0

0 0
[1 0

0 1 01 .
0 11 '

0 0 1

The following question can be presented to thc class, "Why isn't the matrix

a unit matrix?"

3 8
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.
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satisfied for all x, so there is exactly one x, namely x = 1/5, that

satisfies all nine equations.

0 0 0

0 0 0

1.

= 0 =
0 0 0

0 0 0

AC = 0 0 0 =A.
1

2 0 0

0 0 0

BC = 0 0 0

[1
0 0 0

0 1 0 0 0 1

6. A = 0 0 1 , AA = 1 0 0
[1
1 0 0 1 0

[0

1 0 0

0 1 0

Other solutions ame A = I and

7. A
2

S.

0 1

100 1= 1 0 0

0 1 0

[(ab)(ab)
clj)(2)

ab)b2 + b2(-eb)

(-a2)(ab) + (7-ab)(-e2) (-s2)(b2) + (-ab)(-ab)

For example,

A =

(a)

(b)

[22ab

-e
3
b

[ 6 91
-6J

[ 1 01
0 1

[0 1 I
1 0

22- ab ab

+ a
,3
b -a

let a = 2,

A2

33
- ab

2
b
2
+ a

2
b
2

b = 3. Then

36" 36
-24 + 24

54
-36

(d)

(e)

1 0
(f)

[000 0 I

54] [0 0]=
+ 36 0 0

[pages 48, 49]
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D and E, D and F, and E and F are anticommutative.

A2

-
8

5

5

31 '

5A
[-15 - 5-

5 -10 '

[7 0
71

0 7]

0 0
Adding, we obtain

0 0 ;

thus A satisfies the equation

A2 - 5A + 71 O.

10. (A + B)(A - B) A2 + BA - AB - B2;

but in general BA 0 AB,

when combined.

For example, if

A

then

AB IM

so the

[ 1 2]
-1 1

[3 3

3 0]

middle terms

'

B

'
)3A 32

do

[-1 1

2 1 1

[--2 -1
1 51

not give the zero matrix

'

'

so that AB 0 BA, and therefore in this case

In fact,

while

(A + E)(A - B) # A2 - B2.

-9 0
(A + B)(A - B)

A2 B
2 [-4 4-

-4

But (see Exercise 1-9-3) if

41
[pages 49, 50]



[ 2 3

3 21

so that, in this case,

11. Let V =

Then

so that

v
1

v
2

[ 1 2
B = 2 1 then AB = BA,

(A + B)(A B) ° A2 B2.

V
t
= [v

1
v2 ... v

'

W
t
= [w

1
w
2

...

VtW = viwi = Wt V.
i=1

33-

The class will understand this better if you illustrate it for n = 2 and
n= 3.

12. Let A

Then

so that

[aii]
mX p

B = [biki pXn

AB = [ia
j

b
j=1 i ik

m xn

entry in position (i,k)

(AB)t E ai4b4k1
Jul J

n x m

entry in position (k,i)

[page 50]
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13.

further

B = [bjki n x p'
At = [aiji pxni

entry in position (k, j) entry in position (j,i)

so that

Bt At = lE bikaul .

I. n xm

entry in position (k,i)

Hence

Let

Then

(AB)
t

B = [biji

Bt At.

mx p"
C

B + C

(B + C)A

[cij] m p'

cij} mx p'

(bij + cipajkl

and A la [ajki px n*

m n

(b a +c `Iij jk ijajk
m x n

bijaiu bi4ajkl
j=1

bijajki

= BA + CA.

mxn

4 3

[page 50]
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1-10. Summary

The summary of this chapter recalls the principal results thus far obtained;

it also points toward the developments of Chapter 2 and 3. It recalls some

differences between matrix algebra and elementary algebra; it also points toward

yet another difference.

You should dwell with the class on the fact that the operations of sub

traction and division are inverse to'the basic operations of addition and

multiplication.

Every matrix A has a negative, or "additive inverse" A; conseovently,

the problem of subtraction is always solvable for matrices that are conformdble

for addition. This statement is almost too trivial to be understood, and it

should be thoroughly illustrated. Thus, to solve the equation

+ X =
[
7] '

or

A 4.X = B,

for X, we add the negative of A to each side of the equation, getting

[I] + + X = [1] +

whence

X
[11 = B A.
8

Analogous statements cannot be made concerning the problem of division in

matrix algebra. Thus the problem of solving

or

[0 01 V 1

1 0 1 2] '

AX = B,

for X has no solution X. You'can see this by letting

(pages 50, 51)
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[a b
X =

c d

and trying to solve for a, b, c, and d. Thus if there were a solution,

then we would have

an impossibility since

[0 0]

1 0

0

[a
c

0 1.

bi

d

[0
a

0]

b

[1

1

1

21 '

45
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Chapter 2

THE ALGEBRA OF 2 x 2 MATRICES

2-1. Introduction

Much more real mathematics is met in this chapter than in the preceding

one. Chapter 1 is largely concerned with manipulation and depends on computa

tional skill; even the student without much mathematical insight can handle

the material very readily. In Chapter 2, more mathematical intuition is needed,

and the ideaa presented are much more subtle. Extensive discussion about and

around the ideas is necessary in order to convey to the pupils the true con

siderations that are involved. Since there are few routine problema in the

exercises at the end of each section in Chapter 2, only one or two of the

exercises should be assigned at a time. It is better that the student should

do fewer, but more thoughtprovoking, problems than that he should do a larger

number that are merely mechanical.

For a class whose mathematical ability is such that the students experience

difficulty with Chapter:1, it may be best to omit Chapter 2 and proceed ikzeorly

to,Chapter 3. On the-other hand, it is very,likely that Chapter 2 will prmMs.-

most interesting and_Challenging to any class with high mathematical abiit

Of all subsets of rectangular matrices, probably the most interesting.ta the

set of 2 x 2 mattices. There are many mathematicians who feel, that the 2 x 2

matrices have inherently enough value in themselves and can be so elegantly

discussed that they alone should be presented in a text designed for secondary

schools. The word "elegant" is one reserved by mathematicians for special

situations. If the proof of a significant theorem is concisely and cleverly

presented, it is called "elegant." If the exposition of a difficult mathematical

concept is lucidly and originaliy done, it is said to be "elegant." This

adjective is seldom used, for it confers high distinction. The parts of the

present text that would, relatively, "rate" this accolade are probably Chapter

2 and the Appendix.

The transition from Chapter 1 to Chapter 2 is built around the multiplica

tive inverse. A full discussion Of inverses for matrices of arbitrary order is

beyond the scope of the book. The problem can be fylly handled, however, if we

confine our attention to the relatively simple subset of 2 x 2 .matrices.

The general method of determining the inverse, if it exists, is approached

4 6
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slowly. As in Chapter 1, the learning process is made as much an adventure as

possible. Proceed slowly, demanding that the students wrestle with the ideas

and work out their own solXitions if possible.

The purpose of the exercises in the present section is to illustrate the

verification (or falsification), in a variety of unusual situations, of the

properties occurring in the definitions of ring and field. If a property is

valid, a reason should be given; if the property does not hold, a counter

example is called for.

Exercises 2-1

1. (a) The set of integers is closed under addition; that is, any two integers

can be added, and their sum is an integer.

(b) The set of even numbers:is closed under multiplication.

(c) The set (1) is closedrunder multiplication.

(d) The set of positive irtztional numbers is not closed under division.

(For:example, -IT/ .4= 1, which is not irratianal.)

(e) The kiat of integers is closed under the operation of squaring.

(f) The set of numbers A = (x: x > 3) is closed under addition. (This

is read " x such that x is greater than or equal to 3.")

2. (a) False.

(b) False.

(c) True, commutative.

(d) True, commutative.

3. (a) Is not commutative.

(b) Is commutative.

(c) Is commutative.

4. (a) Is not associative.

(b) Is associative.

(c) Is not associative.

(e) False.

(f) True, commutative.

(g) True, commutative.

(d) Is not commutative.

(e) Is not commutative.

(f) Is commutative.

(d) Is associative.

(e) Is not associative.

(f) Is not associative.

[pages 53-56]
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5. (a)

.(b)

/s distributive. In arithmetic, multiplication is distributive over

addition.

Is distributive. For example,

2 * (3 *4) = 2 *

and

14 = 14,

(2 * 3) * (2 * 4) = 3 * 4 = 14.

(c) Is not distributive. For example,

2 * (3 * 4), = 2 *

while

8 = 16,

(2 * 3)* (a* 4) = 6 8 = 15.

The answers are the same for lefthand distribution as they are for

righthand distribution because the particular operations (*) in

(a), (b), and (c) are commutative.

6. (a) No. (Additive identity and additive inverses are lacking.)

(b) Yes. The class should chpck that each of the field properties is

satisfied.

(c) No. (For example, multiplicative inverse of 2 is lacking.)

(d) Yes. Again, the class should check that each of the field properties

' is satisfied.

2-2. The Ring of 2 X 2 Matrices

There is an important distinction between a field and a ring. Every field

is a ring, but the converse statement is not true. For classes that have a

strong mathematical background, there are many examples both of fields and of

rings. The set of rationals, the set of reals, and the set of complex numbers

are all fields under the usual addition and multiplication. Perhaps the best

and simplest examples of rings that are not fields are the ones that occur in
(page8 .56-61)
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the finite number systems. Numbers modulo 4 form a ring, as do all finite

number systems for which the modulus is not a prime. A very simple illustration

of a ring that is not a field is furnished by the infinite set

-2, -1, 0, 1, 2, 3,...)

and its properties with respect to'addition and:multiplication.. Note that in

the general definition of a ring we assume neither the commutativity of multi-

plication, nor the existence:of a multiplicative identity element, nor the

existence of a multiplicative inverse.

In determining whether any set under certain operations fulfills the

criteria for a ring, it is important to prove carefully that each postulate is

-satisfied. With beginners there is a tendency to dismiss any proof with the

word "obvious." This observation is not testimony to their indifference or

casualness, but rather testimony to their lack of appreciation of the subtleties

of the proof. In the particular case of 2 X 2 matrices, 'the inexperienced

student is apt to dismiss the eteirby-step demonstration that the postulates

are satisfied, since he feels that the subset must satisfy the same criteria as

the superset itself. There are many examples that can upset any such notion.

Through their previous experience with mathematics, most students are quite

aware that a counterexample can prove that certain propositions are not valid.

This time, it is important to know that a thousand examples are no proof of the

validity of any general proposition. A general proof that covers all cases is

necessary. In order to prove the propositions in the exercises, it might.be

desirable to hold the students to a certain pattern so that they will systemati-

cally cover each postulate. In order to prove that a certain set under specific

operations is not a ring, it is sufficient to exhibit, in the set, an example

for- which at least one postulate fails to hold.

At all times, however, you should avoid overwhelming the class with details,

such as memorizing the definition of a ring, so that the,students will not lose

sight of the larger objectives of the chapter. From time to time the classwork

should be interrupted in order to review these latter goals.

Exercises 2-2

1. The set of integers is closed, commutative, and associative under addition,

and there,are identity and inverse elemeats for addition; further, the

(pages 57-61]
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set is closed and associative under-multiplication, and multiplication

2.

distributes over addition in both directions. Hence, the set zof integers

under addition and_multiplication is a ring:.

(a) Is a ring.

(b) Is not a ring. (For example, 1 + 1 is not in the set.)

1 1
(c) Is not a ring. (For example, -2- x .2- is not in the bet.)

3. Is a ring.

4. Is not a ring. For example,

ol 2

[0
0 0

[10. 4]5][30 '

so that the set is not closed under addition.

2-3. The Uniqueness of the Multiplicative Inverse

At the secondaryschool level, the problem of the multiplicative inverse is

*ordinarily discussed as the problem of division. Indema, continual reference is

made to the four operations of addition, subtraction,multiplication, andAivision

as if they were on an equal footing. As a result, students do not- havea clear

understanding of the operations. Subtraction and division should not beAlutro

duced as independent operations, but rather as the Inverses of additionand multi

plication, respectively. This idea is haVing a considerable amount of influence

on the newer ninth and tenthgrade texts, where less emphasis is being placed

on the operations of subtraction and division as such, and more on the role of

the additive inverse and the multiplicative inverse. At the moment, however, we

are dealing principally with students who tsve a concept of:four operations. In

order to clarify the relationship between multiplication and division, much time

should be spent on the subtleties of the multiplicative inverse. Since the

exercises in the preceding section serve as an introduction, each of theSe exer

cises should be reviewed. The general discussion of multiplicative inverses

should begin with the real number system. The first example should involve the

integers under multiplication. The integers, except + 1, do not have integers

as multiplicative inverses. For example, for the integer 2 there is no integer

x such that 2x = 1.

[pages 61, 62]
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The number 1 is the identity element fer multiplication'in the real

number system. The identity element for multiplication in the set of 2 x 2

matrices is the matrix

the symbol for which is I. Given a matrix

we call the matrix

the inverse of A if

[a b
A

c di '

f
B

AB = I = BA.

The question of uniqueness seldom arises in the traditional secondary

school mathematics course. This is a regrettable omission. Before any degree

of:mathematical maturity can be achieved, it is necessary to understand that

existence and uniqueness are two distinct notions. Unfortunately, there are

few opportunities to introduce the subject in the ordinary secondaryschool

curriculum. Before introducing Theorem 2-2, it is important to stress the

significance of "uniqueness." Perhaps this simple example will help the class

to understand the point: There exists a positive integer less than 3, but not

a unique one; there exists a positive integer less than 2, and it is unique;

there does not exist any positive integer less than 1.

Exercises 2-3

[: bd] [CIO :1 '

1.(a)

and thus there are no values a, b, c, d that yield I, since 0 0 1.

51
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[a bl [1 0-1 +b
(b)

c d 1 0 c + d 0
0 I,

since 0 0 1.

a bl [1 11 [a + b a +
(c) [c d 1 1 c +d c+ d 0 I,

since a + b would have to be both 1 and 0 for equality to hold.

bcd [23 00] 0]
T,3d 0

since 0 0 1.

2. (a) An inverse pair, since

(b) An inverse pair, since

[1 11
2-3
13 11
2 1

[101
o

[3

2

[1

2

1

[

11 [1
1

3

1 0

o 1]

0

0 11

[1 0

0 11

'

(c) Not an inverse pair.

(d) Not an inverse pair.

(e) An inverse pair if ad bc = 1;

not an inverse pair if ad bc 0 1.

3. Let

A 11 and B =
[2 2

1 1

Then AB = 0. If A had an inverse A , then we would have

o = A-10 . A
-a

(AB) = (A-1A)B = lB = B,

so that B 0, which is not so. Hence, A does not have an inverse. A

similar argument proves that B does not.have an inverse.

5 2
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[ a b
4.

{: [ac-b a]

+ bc I

c e
0 a2 + bc

Hence, if a
2
+ bc = 0, then

2

[: abl
= O.

The argument of Exercise 3 may now be used to prove that if a + bc = 0

then

has no inverse. If it did have an inverse M, we could use M as a left

multiplier to obtain

_ha I
= 0,

which has no inverse.

5. Same argument as that for Exercise 3. Suppose A has an inverse, A
-1

.

Then

0 = A 10 = A
1
(AB) = (A 1A)B = IB = B.

Therefore we would have B = 0, contradicting the hypothesis that B 0 0.

The matrix B can have an inverse only if A = 0, since if B has an

inverse B
-1

then

0 = 0B-
1

= (AB)B
-1

= A(BB-
1
) = AI = A._

For example, if A = 0 and B = I, then the conditions are satisfied and

B has an inverse.

6. A2 4A = A(A 41) = 0, by hypothesis. If A has an inverse, A-1, then

upon multiplying the members of the equation on the left by A-1, we get

A 41 = 0, or A = 41, one of the possibilities. The other possibility

is that A does not have an inverse.

5 3
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7. If8.
9.

AB

[1 4]
0 9

[-1
2 -5

[-1
2 -5]

=

31[5

3

I =

+

2

2

CA,

[ 2

0

3

1

= [-12

then

-41
-6

I

7

B

[-3

+

0

-18
J31

=

0

0

1

'

IB =

01

-5

(CA)B

[0

[5 31

2 1

0

= C(AB)

0]

[-1
2

3

-5

= CI = C.

= I,

[5
2

[ 7

-12

3

1

2

-18]
31

[31

12.

[31
12

18

7

18] [1
7 0

0]
1

[31 18

12 7] -1.2[

7 -18
31.

= I,

so the squares are inverses.

More generally, ±f AB = I, then

(A
2
)(B

2
) = A(AB)B = AIB = AB = .

Similarly if BA = I, then B
2
A
2

= I. Thus we have shown that if A and

B are inverses of one another, then so are A
2

and B-.

As for transposes, by Exercise 1-9-11 we have

I = I
t
= (AB)

t
= BtAt; also, I = I

t
= (BA)

t
= AtBt .

For the particular example in the text, we have

At {-1 2
1

and Bt = 21
3 -5

whence matrix multiplication gives

and

10. (a)

SO

AtBt [ -1 2] [5

3 -5 3

211[-13

2] 0

1

[1
0 1] .= /

251 [01

ij
I.

[-1 0] 0] [1
0 -1 0 -1 0 1 '

5 4
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(b)

SO

(c)

o o

o 11
a

o al

[ o [ o o

a o a ol [o 1] ,

1
[21 1.1

-11

r 0 _11
01

[-4
0-1]

0

'

[0 [01010
so by (a) we have

Hence,

= 1
1 0

al
01 [0 -1] [ 1

0 -4 1 0 -1 0]
-1

II. If 9 = 120°, then cos 9 = - 1/2 and sin 9 = I37Z so

B =
[

1 V3
7 7 ,2 7 2 3

V5 1 ' D 15 1
, B g=

2" 7 2 7

1 Vi
1 0

The result can also be obtained trigonometrically from the expressions

[ cos 9 sin 9] [ cos 9 sin 41
B
2

= - sin 9 cos 9 - sin 9 cos 9

cos
2
9 - sin

2
9 2 sin 9 cos 9

.
- 2 sin 9 cos 9 cos29 - sin29

[cos 29 sin 29
- sin 29 cos 29] '

B3

[cos 29 sin 291 [. cos 0 sin 9]

- sin 29 cos 29 - sin 9 cos 9

(pages 69, 70)
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[

cos 2e cos e sin 20 sin 0 cos 20 sin 0 + sin 20 cos 0
- sin 20 cos 0 - cos 20 sin 0 - sin 20 sin 0 + cos 20 cos 0

[

cos 30 sin 30
- sin 30 cos 30 '

and the va/ues cos 2400 = - 1/2, sin 240° - /5/2, cos 360° = 1,

sin 360° = O.

12. A = [ 3 -4
1 -11 '

13.

[5 -8
-3]2 '

[5 [-.6 81 [1 0] [0 0
A2 - 2A + I a

2 -3 a 2 0 1 0 0

The transpose of A also satisfies the equation, since

SO

and

(A
t
)
2
- 2A

t
+ I

t
= (A

2
- 2A +

t
= 0

t
= O.

pA
2
+ qA = - rI,

- E A2 -S. A = I,

A (- E A I) = I,
r

(- E A - 1) A = I.

14.
x2 p q

2
p
2
+ qr pq + qs

r s pr + rs qr + s2

whence

X
2
- (p + s)X + (ps qr)I

p
2
+ qr pq + qs -p

2
- ps -pq qs=

pr + rs qr + s
2

-pr - rs -ps s
2

[pages 70, 71]
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ps qr 0 ] [0
00

0

0 ps qr ]

Using the technique of 13, if ps qr 0 0, we obtain

so that

X
[ 01 = 12
ps qr ps qr

(1) + 8)11 X = I,
[ qrps qr

X (P s)IX-1
ps qr ps qr

Thus if ps qr 0 0, then X-1 exists.

If ps qr = 0, then

Or

x
2

(p = 0,

X [X (p O)I] = 0.

4 4
Hence, if X exists then lefthand multiplication by X yields

X (p s)I = 0, or

But by hypothesis,

=
[p 0

X
0 ,p 131

Equating entries, we obtain 0 = q = r. Also, as p s = p and

p s = s, we have p = s = 0. But then X = 0 and we know 0 does

not have an inverse. Hence the assumption that X-1 exists leads to a

contradiction, so that if p13 qr = 0 then X
-1

does not exist. In

other words, if X
-1

exists, then ps qr 0 0.

[Pages 70, 71]
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15. If X
2

= 0, then, by Exercise 14,

or

(p + s)X + (ps qr)I = 0,

(p + s)X = (ps qr)I.

47

It follows that if p + s = 0 then ps qr = 0 and we are through. If

we should have p +.s 0 0, then from

[(p s)p (p + s)q] [ps qr 0

(p + s)r (p + s)s 0 ps qr]

we would obtain q = r = 0, whence

(p + s)p = ps = (p + s)s,

or p = s = 0, a contradiction of p + s 0 O.

2-4. The Inverse of a Matrix of Order Two

This section can be considered the kernel of Chapter 2. Do not rush through

the earlier part of the chapter, however, since the discovery process would then

be left uncultivated and much valuable mathematics would be slighted.

The method that is used in obtaining a general expression for the inverse

of a nonsingular (ad bc 0 0) 2 X 2 matrix is quite simple. As far as under

standing goes, the most difficult paragraph is perhaps the threeline one on

pages 73 and 74 of the text.

Note that in the development of a general formula for the inverse, our work

first involves the righthand inverse; namely, given a matrix

we find

[ a b

c di '

5 8
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[P such that [a bl [17 1 = I.rs cd rs

In order to satisfy our definition, namely that B is the inverse of A

AB = I = BA,

we ;lust then demonstrate that the righthand inverse is also the lefthand inverse.

After this has been demonstrated, it is possible to state the results as a

theorem. It is again important to emphasize that the converse of any particular

theorem does not necessarily follow from the theorem itself; in fact, the con

verse might not even be valid. There are many familiar examples, particularly

in geometry, that can be used to clarify this point.

1. (a) [
1

Exercises 2-4

(b) Inverae does not exist, since h = ad bc = 0.

(c)

(d)

(e)

(f)

21

h h
9 3 '

11
1

2
2

[ 1 0
2

3 1 1

1 a

14

0 7
1 I '

where h = 126.

(g) Inverse does not exist, since h = ad bc = 6 6 = 0.

2. We have already established that a 2 x 2 matrix has no inverse if and

only if h = ad bc = 0. W. now find the values of x for which h = 0:

(pages 71-76)
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(a) x
3

1 = 0, x
3

= 1, x = 1 (since x e R).

(b) x
3

= 0, x = 0.

(c) (x + 2)(x 1) = 0, x E (-2, 1).

(d) 3x
2

2(x 1) = 0,

3x
2

2x 2 = 0.

Discriminant is negative; hence there is no real solution and an

inverse exists for all x e R.

3. (a)
[ cos 0
sin 0

sin 0] -1
cos 0

1

0 cos
cos 0 sin 01

0
cos

2
0 + sin

2
0

sin cos
2
0 + sin

2
p = 1.

(b)

[cos 0 sin 0
sin 0 cos 0] '

cos e sin 01[ cos a sin a]
sin 0 cos 0 sin a cos a

cos 0 cos a sin 0 sin a cos e sin a + sin 0 cos a
sin 0 cos a cos e sin a sin e sin a + cos e cos a

[ cos (a + 0) sin (a + 0)
sin (a + 0) cos (a + 0)]

4. Suppose A has an inverse, say B. Then

so that

or

AB = BA = I,

(AB)t = (BA)t =

BtAt = AtBt = I.

Hence A
t

has B
t

as its inverse.

6 0

(page 76)
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Conversely, suppose A
t

has an inverse, say B
t

. Then

so that

or

or

= I,

(AtBy (BtAt t It

(Bt)t(At)t
= (A

t
)

t t
= I,

BA = AB = I.

Hence A also has an inverse, namely, B.

We have shown, above, that if A has an inverse B, then

BtAt
= AtBe

Hence, as B = A7
1

, we have

(A
-1

)tAt = At (A
-1

)
t

= I.

But this says that the transpose of A-
1 is the inverse of A

t
since the

product in both directions is I.

d b

[a
c a '

ad bc 0 O.
c d

Since

G.13 (111) (1) (1) ad -.2bc. h

h
2 -h- '

A
-1 has an inverse given by

6 1
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bi
d

c

h

b

a

h

1
ah
h

ch

h

bh
h
dh
h

[a
c

bi
d

6. If A e M has an inverse, say A
-1

, then the solution of AX = B, for

B M, may be indicated as follows:

AX = B,

A
-1

(AX) = A
-1

B,

or

(a)
2

1

4

11
1

TT

3

4

1

11
2

Ti

11

291

1

2

6

1 '

4

[Ti

314

Or

3

11
2

11

.xzl

X =

(b)
[ 3

2

xz I

1

1 1

5 5

2 3 '

3 3

1 1

5

2 3

3 3

1 3
or x = 3 .

X = A
-1

B.

6 29
z =

11 ' 11

1

5

3

5

6 2

[page 76]
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(c)
[ywl

so y = w = O.

4
0

3

1 2
0

11 11

11 111 r.0

0

11

152

1

(d)

so y = 1/5, w 2/5.

Parts (c) and (d) should be compared with parts (a) and (b), respec

tively. Since the matrices of coefficients are equal, the inverses do not

have to be recomputed.

2-5. The Determinant Function

many teachers have had experience with determinants in finding the solution

of a system of linear equations. Seldom has it been pointed out to them that

the determinant value is in a functional relationship with the coefficients of

the variables. Although much time is spent in this section in developing theoreru

involving the determinant, the single most important idea is the assignment, or

mapping,

5(X) x --> x for X e M and x 6 R.

Although this text does not dwell on determinants of matrices of higher

order, any class that has had experience with determinants in advanced algebra

can be shown the functional relationship that exists, through the determinant

function, between 3 x 3 arrays of real coefficients on the one hand and the

real numbers on the other.

,It is important to recall the definition of a function. If with each

element of a set A there is associated in some way exactly one element of a

given'set B, then this association constitutes a function from A to B. The

essential pant here is that a function pairs one and only one element of B

with each element of A. The symbolism
6 3
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5 : X --> 5(X)

is only suggestive, since nothing is said about the nature of the association.

This association is defined by the open sentence: If

then

[a b
X =

di '

5(X) = ad -ybc.

In order to specify any function completely, it is necessary to designate

the domain of the independent variable and the range of the dependent variable.
The domain of the determinant function is the complete set of 2 x 2 matrices.
The range is the set of all real numbers. With each member A of the set of
2 x 2 matrices, there is associated a unique real number r = ad - bc. It is

impOrtant to notice that this mapping gives a unique image, since this is an

important criterion of a function. Since all images under the mapping are real

numbers, we can perform all'the usual operations on them. Through these

operations many interesting properties of the determinant function can be

demonstrated.

2 1
1. '(a) 5(A) = 5 [ 3 4 I = 5)

5(B) = 5
[2 11

= 2,
4 3

[ 8 5
eo(AB) = 5

22 15

Exercises 2-5

= 120 - 110 = 10 = (5)(2) = 5(A) 5(B).

11
(b) 5(A) = 5 [._.1 t] t

3
+ 1,

5(B) = 5 [ 0 1

1 0

1 t
2

5(AB) = 5
t 1

1= 1 t
3
= (t

3
+ 1)(-1) = 5(A) 5(B).

[pages 77-83]
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x x

(c) 8(A) = 8 = 0,
3 4

EJ(B) = 7x,
[13 4]

8(AB) =
[4x: 3x:] = 0 = (0)(7x) = 8(A) 80).
4x 3x

[ a 131 [ta
2. LetA = then Lk =

c d ' tc td '

8(tA) = (ta)(td) (tb)(tc) = t2(ad bc) = t
2
8(A).

3. 8(A - tI) =
[a t b

= (a - t)(d - t) - bc
c d t

where

= t
2

t(a + d)t + ad - bc,

ad - bc = constant term = 5(A).

2
4. 8(A) = [x 11 - x - x ,

x -4

8(BAB-
1
)

[3c2 11 [1 1])
x -1

2 II
5 -:: :x2 -13 -: -12

[= 5 - 4x - 2x2 + 5 -2x - x2 + 2

10x + 4x2 15 5x + 2x2 - 6

= (-2x
2
- 4x + 5)(2x

2
+ 5x - 6) - (-x

2
- 2x + 2)(4x

2
+ 10x - 15)

= (-4x
4
- 18x

3
+ 2x

2
+ 49x - 30) - (-4x

4
- 18x

3
+ 3x

2
+ 50*-- 30)

5. By Theorems 2-6 and 2-7, 8(BAB-
1
) = B(B) 8(AB-

1
) = 8(8) NA) 8(8.-

1
)

1
= 8(8) 8(A) = 8(A).

6 5
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6.

7.

8.

Let A u

b(A) u ad

(b)

(c) 5

(d)

t
AA

a b
c d

bc,

t

t

0

[
0 0

t 1

[a t

0

2 01
1 1

then
'

5(At)

2 I

0

1

=
t]

0 ]

b t

12 1]
0

At

= ad

u (1

= (-1
t

]

0; zero

= (a

1

=

cb

t)(4

for

t)(b

i 4
2

a c
b d

= b(A),

t);

t)(1

all

t);

2
2] '

'

b(AAt) b(A) b(At)

= (ad bc)2 0.

zeros are 1, 4.

t); zeros are 1, 1.

t.

zeros are a, b.

x 2 ]5(AA
t

= 5 = (4 x)(2 x) 4
2

u x 6x + 4;xI) 2 2 x

A
t
A =

011
= 1 1] '

b(A
t
A xl) b

x 1 2

= b(AAt xl).

In general, a computation gives

b(AA
t

xI) x
2

x(a
2
+ b

2
+ c

2
+ d

2
) + (ad bc)

2
u b(A

t
A xI).

2-6. The Group of Invertible Matrices

In this particular section, the mathematical concept of a group is introduced

in a natural way. So far in this chapter, most of the discussion has centered

around the operation of multiplication and the existence of an inverse. There

should be no break now in the iilbject matter, nor should there be any abrupt

digression in the point of view. The group concept evolves as a notion that

binds the new ideas together. The more general definition of a group embraces

the particular one that is stated first in terms of matrices. It will be an

[pages 64...92]
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easy step later to proceed from the more specific to the general.

The illustrations and exercises are easily handled in terms of the specific

definition of a group of matrices. Before introducing the general definition of

a group, it would be well to give a considerable amount of collateral reading

in order that the students will have some indication of the power and scope of

the group concept.

Although the text gives several illustrations of both finite and infinite

groups, there are a great many more that can readily be found and used for

clans illustrati-m. If the students have had experience with the concept of

congruence, they will find that this notion yields many simple examples. For

instance,

and

(1, 2, 4) mod 7,

(1, 3, 9) mod 13,

(1,3,5,7) mod 8,

are groups under the operation of multiplication.

The exercises at the end of this section depend more on mathematical insight

than those at the end of many other sections in the book, particularly those.that

have occurred up to this point. The exercises in the present section.do not

require much computational skill. If the class is not ableto handle the

exercises independently, do not despair!

Exercises 2-6

1. (a) No; not closed under multiplication.

(b) Yes; all four properties can be read off from this multiplication

table:

I I K K

I I I K K
I I I K K
K K K I
K K K I I

2. The result follows quickly from the observation that I is a member of the

[pages 85-92]
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set, that the associativity law holds generally for 2 X 2 matrices, and

that if

[a 0] [1:. 0]
A = =

0 a
B

0 b

are elements of the set, then

[1
AB =

[ab 0] 1
0 ab A

1

a

0 I

[a b] [c di [ac + bd ad + bc
ba dc ad + bc ac + bd] '

and B(AB) = B(A) B(B) = (1)(1) = 1; thus if A and B are of the pre

scribed form, then so is AB, and accordingly the set is closed under

multiplication. The associativity law holds as in Exercise 2, and I is

an element of the set. Finally,

[ a b
1 a b1

b a b a '

since h = a
2

b
2
= 1, so that the inverse of any element of the set is

a member of the set. Hence the set is a group.

4. A2

A3

1

2

lrj

2

{ 1 0

0 1

15
2

1

2

= I.

2

........

The group properties all follow from the multiplication table:

X I A A2

I I A A2

A A A2 I

A2 A2 I A

Note that A-
1
= A

2
, (A

2
)
-1

= A.

[page 92]
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5. TIT

-1
= I, T(-I)T

1
= - (TIT-

1
)

1 -21
T
-1

T =
-1 1.1 '

-1
-1

1

0

- I,

-2
-1] '

3

'

K
2

= 1,

K =
[0

T(-K)T
-1 1

0

11

3
1

[-2 1
TKT

-1

1.1 -1 I ' -I]

The multiplication table yields the four group properties:

X
-.

TIT
1
= I T(-I)T-

1
= - I

1
TKT T( K)T

-1

-1

T
KT-1

-
T(-K)T

1

There is no restriction

I

-1

TK T -1

T(-K)T
-1

on T

-1

I

T( -K )T -1

TK T-1

other than that

T(. K)T
-1

TK T -1

T KT-1T(-1()T
-1

I. ....../

-a I

T-
1

exists. Hence,

table shows that we have a group provided T is invertible.

b. [a 0] [ac 0

Ob Od 0 bd '
6 9

[pages 92, 93]
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and (ac)(bd) = (ab)(cd

form.

(1)(1) = 1; hence the product is of the desired

If ab = 1, then a 0 0, b 0 0, and therefore 1/a and 1/b

exist. Hence

1

[

0 b
a Or °

11 '

0 1-;

so that each element has an inverse; and

113. "

so that the inverse is of the desired form.

1 01
The identity matrix I = is a member, and the associative

0 1

law holds as usual.

The graph of ((a,b): ab = 1) is a hypeepola:

Let

(-1,-1

= aI

B = cI

bK

dK

=

=

( 11

c[

d

(a) See Exercise 3. 7 0

[page 933
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x
-1

hi
(b) 1 ma x

provided h x2 - y2 0.

h

(c) See Exercise 3.

8. (a) Let

Then

G
t
m (A

t
: A e G), At e Gt, Bt e Gt .

AtBt m (BA)t.

Since BA e G, it follows that (BA)t Gt, so that G
t

is closed under

multiplication.

As we are dealing with 2 X 2 matrices, associativity holds.

G
t

has an identity element for multiplication, since

t [1 0
I m 11 e G

t.

We have already proved that (A
t 1

u (A
-1

)
t

. (See Exercise 2-4-4.)

Since A C G, it follows tha (A
-1

)
t
m (A

t 1
C G

t
.

Hence Gt is a group.

(b) Let GI (BAB-1: A e G, B e M with B fixed and invertible),

-1 -
CI m BCB e G', D' BDB

1
E GI.

Then

- - 1, -
CID' (BCB 1)(BDB 1) m BC(B D)DB

/
0 B(CD)B

-1
.

Since CD e G, it follows that B(CD)B-1 e G'. Hence, C'D' e G, and

closure is established.

Since we are dealing with 2 x 2 matrices, associativity holds.

-1
Since II m BIB

-1
m BB I, it follows that I' I e G', and GI

has an identity element for multiplication.

7 1
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Let C' e C' and consider

(BCB-
1) = BC-1 B-1 .

Since C e G, it follows that

1
C e G and BC

1
B
-1

e G'.

But

61.

C'(C')-
4

=.(BCB-
1
)(BC-111-1) = BC(B

-1
B)C

-1
B
-1

= B(C6-
1
)B
-1

= BB
-1

= I = V.

Similarly, (C')-1 C' = X.

Hence G' is a roup.

. (a) Let B e G. Then B-1 c G, since G is a group. Accoraingly,

B e (A
-1

: A e

namely, B is the member obtained by setting A = B
-1

. Conversely, let

-a
B e (A : A e

Then B = A for some A c G. But then A-1 e G since G is a group,

and therefore B = A
1

e G.

(b) Let C e G. Then B
-4

C e G, and accordingly

C e (BA: A c G),

namely, C is the member obtained by setting A = B
-1

C. Conversely, let

C e (BA: A e

Then C = BA for some A c G. But also B e G. Therefore, C = BA c G

since G is a group.

(a) The set of odd integers does not form a group under addition, since

it is not closed under this operation. For example, 3 -I- 5 = 8, and 8

[page 94)
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is not. odd.

(b) The set R
+ of positive real numbers does form a group under multipli-

cation.

If a c le, b le, then ab R, so we have closure under multi-

plication.

If a c,le, b c le, then (ab)c = a(bc), and we have

associativity under multiplication.

1 C R
+

, so there is a multiplicative identity.

If a R
+

, then R and (a) (-) = R(a) = 1. Hence,
a a a
1 + 1 1

each number of R
+

has a multiplicative inverse.

(c) A = (1, -1, i, 1) f's a group under multiplication. We shall examine

the multiplication table:

1 -1 i -1

1 1 -1 i

1 -1 1 -1 i

i -1 71 1

1 i 1 ,71.

The body of the table contains only members of the original set A,

and so A is closed under multiplication.

Complex numbers are associative under multiplication. We could alsO

verify this by checking all possible products of three factors: (ab)c =

a(bc).

The element 1 serves as an identity element.

Each element of A has an inverse element in A, as can be found

from the table. Thus

(d) Let T = (3m: m is an integer). Let a, b, and c be arbitrary

integers, so that 3a, 3b, and 3c are arbitrary members of T. Then

[Page 94]
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3a + 3b = 3(a + b),

(3a + 3b) + (3c) = (3a) + (3b + 3c),

so that the closure and associativity properties hold.

We have 3a + 0 = 3a, for 3a e T; and (3)(0) = 0 E T. Hence

there is an additive inverse in T.

We have 3a + (-3a) = 0, and 3a = 3(-0 e T, since a is an

integer. Hence every element 3a E T has the additive inverse 3a also

in T.

Thus T is a group under addition.

11. If aob=ao c,

then
-a

a o (a o b) = a o (a o' c),

-a 1
(a o a) o b = (a o a) o c,

ibb=ioc,

b = c.

2-7. An Isomorphism between Complex Numbers and Matriccs

In this section, as in its predecessor, powerful mathematical ideas are

introduced in an easy manner. The new ideas seem to arise from the context. In

both sections, a rich background through which to make associations is most help

ful, though certainly not necessary. Me text itself introduces a considerable

amount of rich material that is easy to handle. For the class that has not

been using complex numbers recently, a short review of these numbers and their

operations is in order.

When the class truly understands how it is that the algebra of complex

numbers is embedded in the algebra of matrices, a very significant goal will

have been attained.

7 4
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Exercises 2-7

1. (a) (1 i) + (0 21) (I J) + (0 2J)

= 1 3i I 3J,

2.

and

(1 i)(0 2i) (I J)(0 2J)

2IJ + 2J2

2J 21

21 2J.

(31 4J) + (I + J) =

41 3J,

= 2i + 2i
2

= 2 2i

(b) (3 4i) + (1 + i)

= 4 3i E-->

and

(3 4i)(1 + i)

= 3(1) + 3i 4i 4i
2

= 7 i

(c) (0 5i) + (3 + 4i)

= 3 i E-->

and

(0 5i)(3 +4i)

= 20 151

(x1 + x2)

= (x1x2)

(31 4J)(I + J)

31 + 3J 4J 4J
2

71 J.

(0 5J) + (31 + 4J) =

31 J,

(0 5J)(3I + 4J)

201 15.1..

x
1 0

LO 'xl

x
2

0

[0 x
2
1 ;

x 0 x 0

[1 +x
1
i0 10 x

2
1

[xl + x2 0

0 x
1
+ x

2

0 0

0 x
1

0 x
2

[x1x2 0 1

0 ,x1x2] ;

(page 101)
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x 4>

3. (a)

(b)

(c)

(d)

(e)

True:

True:

True:

False:

False:

f(x + y)

f(xY)

f(1) =

f(x) =

1

=

10

0

1

0

x
0

has'no inverse.

65

00]

[10. 01]

0 xi '

0
11

1

° for x 0 0.

[

0 0

x y 0]
[ 0 0 0

x 0

]

y 0]
= f(x)+ f(y).

0

gi
00 g

f(x) f(Y).

01

0

0 1 0

0 r 0 1

0]
0

Relative to parts (d) and (e), however, within the class of matrices

[

1 0
f(x) the matrix = f(l) plays thc, role of unit element in that

0 0

and the matrix

f(x) f(1) = f(x) = f(1) f(x), x 6 R;

o
= f x e R, x 0 0,

0 0

plays the role of the reciprocal (or multiplicative inverse) of f(x) in

that

1 1
f(x) f(l) f() f(x).

.x

4. Let x e G and y e G: 7 6

[1:4.Iges 101, 102]
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x = b a
a 11

' /

c

d c '

Then

and since

ac bd ad + bc
xy = ad --bc ac bd]

b(xy) = B(x) b(y) = (1)(1) = 1,

it follows that xy e G. Hence, G is closed under multiplication.

Also, G is associative under multiplication, since 2 X 2 matrices

have this property in general.

Next,

0 1I =
[

e G,

since BM = 1 and 1 is a rational number.

If x e G, then

a b

1 a b
x =

[17,

b a

[

b al '

R h

since h = a
2

+ b
2
= 1. Hence, G has the inverse property for multt

plication.

Accordingly, G is a group.

2-8. Algebras

This section is a summary of Chapter 2. As is the case with all summaries,

it is superfluous if the work of the chapter has brought the class to the prolier

degree of mathematical maturity. By now, the student Will clearly understand'

that there are many algebras --- different, but not entirely different) from

the algebra of real numbers. He will begin to understand the scope and

[page 102]
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imaginative qualities of the discipline and to realize that the student of

mathematics has as much room to express himself as the student in any other

discipline.



Chapter 3

3-1. Equivalent Systems

As mentioned earlier in this Commentary for Teachers, Chapter 3 may be

undertaken immediately following Chapter I. Chapter 2, which is concerned with

the algebra of 2 x 2 matrices, constitutes a unit by itself, and the chapter

is not a prerequisite for Chapter 3. The operations introduced in Chapter I

--are sufficient for the material in Chapter 3. Undoubtedly there will be many

teachers who feel that it is better to cover Chapter 3 before Chapter 2 in order

to solidify the students' mastery of the operations defined in Chapter 1.

The overall purpose of this chapter is to introduce the use_of matrices

as a meand'of solving linear systems, to familiarize the student with the

inverse of a matrix and with a method for finding the entries for the inverse,

and to show how to use the inverse in practical situations.

In beginning the chapter, the teacher will probably wish to review

briefly the usual methods for solving systems of linear equations as introduced

in the students' earlier algebra courses. It may be well to start with systems

of two variables and to consider the methods of addition and subtraction, sub

stitution, and graphing.

We have placed a great deal of emphasis on the notion of equivalent

systems in this section, and graphic solutions of twovariable systems offer

an excellent opportunity to display this equivalence visually.

For instance, consider the system:

2x y = 3, (1)

5x 3y = 7. (2)

A solution by addition loade, next to the system

followed by

2x y = 3, (3)

x = 2, (4)

x 1= 2,

7 9
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y

We may represent (1) and (2) graphically by

From this, the solution (x,y) (2,1) can easily be observed.

Now the system of equations

2x y = 3, x = 2,

(6)

which was obtained by algebraic operations from the first system, can also be

graphed, thus:

From this graph, it, is quickly noted that the solution is again

[pages 103-106]
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(x,y) = (2,1).

If we continue our algebraic operations, we can finally obtain the system

x = 2, y 1.

Again we have two equations that can be represented graphically:

(2,1)

From this graph, it iv immediately seen that the solution is once again

(x,y) = (2,1).

From these graphs, the student can readily appreciate the fact that all

three systems have the same solution. Since equivalent systems are systems

having the same solution, it follows by definition that the three systems

designated above are equivalent. The graphs are not a proof of this, but they

are aids in understanding the operations and their impact on the systems.

Solutions of twovariable systems can be extended to apply to three

variable systems; it is unlikely, however, that the student will ever have

developed a solution in exactly the manner of the example in the text. In

class demonstrations, the teacher should always use the pattern of the text

and emphasize the systematic nature, pointing out that this technique, while

different in structure, is Very similar to the usual addition method of solution.

The procedure used here, however, is one that generalizes easily and that lays

a foundation for the matrix methods you will subsequently employ. The emphasis

throughout this section should be on equivalence.

[pages '103-106]
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The earlier exercises provide practice in using the technique of solution

developed in this section. The last exercises are provided to lead into later

work.

Exercises 3-1

1. (a) 3x + 4y = 4,

5x + 7y = 1;

15x + 20y = 20,

15x + 21y = 3,

21x + 28y =

20x + 28y =

28,

4,

y = 17, = 24 .

y = 17;

(b) x 2y = 3, x 2y = 3 1

y = 2; 2y = 4,

= 7.

(c) x + y z = 3, x + 3y = 13,

2y + z = 10, 2y + z = 10,

5x y 2z = 3; 5x + 3y = 17 ; 4x = 4, 3y = 12,

x = 1 y = 4,

z = 2.

(d) x 3y + 2z = 6,

Y z = 4,

z = 7, = 3, x,= 1.

(e) x + 2y + z 3w = 2,

y 2z + w = 7,

z 2w = 0,

w = 3, z = 6,

(f) x = a, y = b, z = c, w = d.

8 2
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2. (a) x + y 2 ,

x y 2 ;

x = 2
y 0

3 .

(b)

(a)

3x y = 11 ,
5x + 7y = 1 ;

x = 3 ,
y = 2

0 u

0 0 1 w

73
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4.

(b) 100 [a. x a x
0 1 0 b yl by.
0 0 1 c z c z

x = 2, + Oy + Oz = 2, 2x + Oy + Oz = 4,

y = 3, -> Ox + y + Oz = 3, -> Ox.+ y + Oz 3,

Ox + Oy + z = 1, Ox + Oy + z = - 1,

2x - 3y + Oz = - 5, 2x 3y + z = - 6, 2x - 3y + z - 6,

-> Ox + y + Oz = 3, -> Ox + 2y + Oz = 6, x + 2y + Oz = 8 ,

Ox + Oy + z = 1, Ox + Oy + 3z = 3, Ox + Oy + 3z = - 3.

lx - 3y + z = - 6, 2x - 3y + z = - 6, 2x - 3y + z = - 6,

---> x + 2y - z = 9, ---> x + 2y - z = 9, ---> x + 2y - z = 9,

Ox + Oy + 3z = - 3, 3x + Oy + 3z = 3, 3x + y + 3z = 6.

Since the solutions of A are solutions of B, the two systems are

equivalent.

5. (a) x + 2y - z = 3,

x - y-+ z = 4,

4x - y + 2z = 14;

2x + y

2x + y = 6

(b) x + 2y - z = 3,

x y + z = 4,

4x - y + 2z = 15,

2x + y

2x + y

Since there exist no values of Therefore an infinite number of values

x and y that satisfy the two of x and y satisfy the two equations

equations thus obtained, the obtained.

solution set is 0.

For x = 0, y = 7, we get z = 11;

x = 3, y = 1, we get z = 2;

x = 1, y = 5, wl get z = 8.

3-2. Formulation in Terms of Matrices

There are two major ideas introduced in this section. The first centers

around our ability to represent systems of linear equations in matrix form. This

[pages 106-112]
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is an enormous accomplishment. The quiet statement on page 108-109:

"It is an achievement not to be taken modestly that we are
able to consider and work with a large system of equations in
terms of such a simple representation as AX = B."

is one of the most significant in the book. The concept of the matrix equation

AX = B leads naturally to the second of the important ideas in this section,

that of the matrix function. If chapter two was covered, the student is

familiar with the determinant function

5 : 14 ---> R,

having a set of matrices as domain and as range a set of real numbers. In this

chapter, we introduce a new function

f : X > Y,

where both the domain aud range are sets of matrices. Although we are concerned

only with the problem of finding the matrix in the domain that maps onto a

specified matrix in the range, the concept of a function from matrices onto

matrices is used in later chapters. Since it is one that arises naturally from

matrix equations, we include it at this time.

The principal technique to be gained in this section is simply that of

expressing linear systems in matrix form. We shall put it to use in Sections

3.4 and 3.5.

The exercises provide work in both the techniques and the underlying ideas

developed in this section. In particular, Exercise 3 should be worked out in

the form used in Section 3-1 in order to familiarize the student with a pattern

to be duplicated later in matrix form.

1. (a)

(b)

3

0

[1

1

2 71 Lx
1 5 Y
5-1 z

1 y
11[1

=

[ 221

Exercise 3-2

2

[I.

3

.

8 5
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2. (a)' 3x + 4y + 5z = 1,
x + 2y + 3z = 0,

y + 2z = 2.

(b) 3x + 2y -- 2z = 1,
2x y 4z = 2.
-x + y + 5z = 3,
3u + 2v - 2w = 2,
2u - v - 4w = 3,
-u + v + 5w = 1 .

3. x+ y+ z- wul, 1 1 1 -1

x y + 3z + 2w = 2, 1 -1 3 2

2x + y + 3z + w = - 2, 2 1 3 1

x - 2y + z + 3w = 10, 1 -2 1 3

x+ y+ z- w= 1, 1 1 -1
2x + 0 + 4z + w = 3, 2 0 4 1

3x + 0 + 6z + 3w = 0, 3 0 6 3

3x + 0 + 3z + w = 12, 3 0 3 1

x+ y+ z- w= 1, 1 1 1 -1
0 + 0 + 0 - w = 3, 0 0 0 -1

0 + 0 + 3z + 2w = - 12, 0 0 3 2

3x + 0 + 3z + w = 12, 3 0 3 1

x + y + z + 0 = - 2, 1 1 1 0

0 + 0 + 0 - w = 3, 0 0 0 -1
0 + 0 + 3z + 0 - 6, 0 0 3 0

3x + 0 + 3z + w = 12, 3 0 3 1

x + y + 0 + 0 = 0, 1 1 0 0

0 + 0 + 0 - w = 3, 0 0 0 -1
0 + 0 + z 0 = - 2, 0 0 1 0

3x + 0 + 0 w = 18, 3 0 0 1

8 6
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x + y + 0 + 0 = 0, 1 1 0
_

0

0 + 0 + 0 0 0 0 1 3

0 + 0 + z + 0 = 2, 0 0 1 0 2
x + 0 + 0 + 0 = 7, 1 0 0 0 7

0 + y + 0 + 0 = 7, 0 1 0 0 7
0 + 0 + 0 + w = 3, 0 0 0 1 3
0 + 0 + z + 0 = 2, 0 0 1 0 2
x + 0 + 0 + 0 = 7,

x + 0 + 0 + 0 = 7,

1

1

0 0 0

- -r

X

7

7

0 + y + 0 + 0 = 7, 0 1 0 0 7
0 + 0 + z + 0 = 2, 0 0 1 0 2
0 + 0 + 0 + w = 3, 0 0 0 1

4. (a) Y =

(b)

x = 7,

y = 7,

z = 2,

= 3.

[1
21 {y'x13 4

[1
21 [ [ 17713 4

1 421 [ r: 1 231,

3

1 2 x
30-2 y 1-71 '

from which

7
y.= and x = 4.

2

5. A = [a a a a] Y= [5, , a., x , y e R.
1 2 3 4 ' 1 i 1

AL = Y,

8 7
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[al a2 a3 ad X = pl]

[a
1

a2 a3 a 4]

x
1

x
2

x
3

x
4

+ a2x2 + a3x3 + a4x4] = [yl] .

The domain of X is tbn set/of matrices

x
1

x
2

x
3

x
4

Since AX = Y is not onetoone from X to y, there exists no

inverse; for example, if al = a
2
= a = a

4
= 1, then

are both mapped onto [1] .

1

00

and
0

0

3-3. Inverse of a Matrix

The principal ideas advanced in this section are those of row operations

and row equivalence. Finally,.we combine these ideas to produce the inverse

of a 3 x 3 matrix. These concepts can be developed quite independently;

they do not depend on linear systems in any way. In fact the common practice

in more advanced texts is to introduce linear systems after these concepts

have been developed. It is the purpose of the present text, however, to

provide something concrete upon which to build the students' thinking; thus

our development is interwoven with work on linear systems.

[pages 113-416]
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The present test gives a method for determining the inverse of a square

matrix, provided that it exists. It is definitely not the only method. We

now present a popular alternative method of finding an inverse so that, if you

wish, you may present it to the class and dispel any notion the students may

have about the uniqueness of the method they are learning. First we must define

a minor and a cofactor.

Let us consider the general 3 X 3 matrix

a b c

A d e fl .

g h i

If we delete one row and one column, we have left a matrix consisting of two

rows and two columns. If we delete the row that Contains e as an entry and

the column that contains e as an entry, we ha.,e a 2 X 2 matrix. The

determinant of this matrix is called the minor of A corresponding to e.

and ai cg is the miwr for e. Similarly, dh eg is the minor for c:

Now to fo...4 the inverse A of a 3 X 3 matrix A, we first write the

matrix having as entries the minors corresponding to the reapective entries of A.

Hence we have

{ei fh di fg dh eg
bi ch ai 7 cg ah bg .

bf ce af cd ae bd

Next we write the transpose of this new matrix:

[ei fh bi ch bf ce
di fg ai cg af cd .

dh eg ah bg ae bd

[pages 113-116j
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Finally the inverse is formed by alternating the signs of the terms (the minors

with signs thus chosen are called cofactors) and then dividing each term by

b(A), where

Thus

b(A) = aei + bfg + chd gec - hfa - ibd.

A
-1=

ei - fh bi - ch bf - ce

b(A) b(A) b(A)

di - fg ai - cg af - cd

b(A) b(A) b(A)

dh - eg ah -la ae - bd

b(A) 8(A) b(A)

If you care to, you can develop this particular form by carrying through the

proper series of row operations on A and 1; but it is a herculean task.

Have many sheets of paper and be prepared to spend a great deal of time.

As in the case of 2 x 2 matrices, if

b(A) = 0,

then A does not have an inverse..

The exercises provide practice in finding matrix inverses. The student

should discern for himself through Exercises 3 to 8 some of the ideas developed

in the following Section 3-4.

1. (a) [-21 23]

{-1 2 j

2[1 53

[01 -7511-11

0,[01}

{01 1;

[11 01 1;

-211;

Exercises 13

Check:

9 0
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[15 1 1

0 11' {-I 2T. I ;
7

{(b) 0 34 2

1

2

11

2 0

1y

1

' 0

1

0

-5

2

0
1

1

1
2

I

0

1

2
;

Check:

1
0

3

4 2
[ 1 0

0 1

[1 21;

' 1
0 1

1

0

.1

0

0

1

0
1
0

0

1

0

0

1

0

3
0
0

3

0

0

3

0

0

1

, 0
0

1

, 0

0

1

, 0

0

0
1
0

0

1

0

o

1

0

0
0
1

1

0

1

1

2

1

1

1

;

;

9 1
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Check:

0 0 1

0 1 0

1 0 0

1 0 0

0 1 0 ,

0 0 1

1

-5

0 0

0
1 1

0 3

1 0 3

2 1 0

2 0 0

(d) 1 0 2 1 0 0
0 1 0 0 1 0
3 0 1 0 0 1

Check:

{

1 0 2 1 0 0
0 1 0, [ 0 1 0
0 0 3 0 1

1 0 2 1 0 0

0 1 0 , 0 1 0
3 1

0 0 1 3 0 3

0 0

0 1 0 ,

0 0 1

1

3
0
3

1 0 0

= 0 1 0

0 0 1

2

1

3

1
0

0 1

33 0

0

0 1

3 0

2
5
0

1
5

2

0

1

1 0 0

0 1 0

0 0 1

9 2
[page 117 .1



2.. (a) 2 2

1
1 1

1

[1 1

o 1 +

1
-2-

0 1

1 0

0 1

1 0

,

0 1

Check:

[4 21
6 3

0

2 3 4

1 3 1

0

2 3 4
2 3 4

1

ol

2
1Ii

0

1 1

2(1 + IT) 1 +

1 1 1

2 2(1 + 11) 1 +

1

2(1 + IT) +

if 1

2(1 + i+ff
1 1

2(1 + VT) 1 +

1

1 + VT
1

1 +

2 1 0

1 1/2.1 0

S(A) = 0, so no inverse.

1 0 0
, 0 1 0 ;

0 0 1

1 0 0
, 0 1 0 ;

1 0 1

6 3

(page 1171
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1 0 3

0

{

0 0

2 3 4

1 0 0

-1 1 -1
1 0 1

Since the left matrix will not reduce to the identity matrix, there

exists no inverse.

I

(d) -1 2 1

0 1 -2 ,

1 3 1

[ 1-1 2 1

0 1 -2 ,

0 5 2

{ 1-1 2 1

0 6 0

0 5 2

1 -2 -1

0 1 0

O 0 2

1 -2 -1

O 1 0

O 0 1

1 0 -1

O 1 0

O 0 1

1 0 0

O 1 0

O 0 1

1 o 01
0 1 o ;

0 o 1

1 o o
0 1 01 ;

1 o 1

1 o o
1

1

1

o
11 ;
1

_

o o
1 1 1

666
1 o 1_

-1 0 0

1 1 1

6 6 -67

1 5 1

1 3

-1 0 0

1 1 1

3 6

1 5 1

12 -12 12_

2 1 1

3 3 3
1 1 1

3
1 5 1

12 12 12

7 1 5_

12 1 2 12

1 1 1

6 6

1 5 1

12 1 2 12

ipage 117]
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C
heck:

7 1

12

- 12

1 1

-6 -6

1 5

12 12

(e)

1 4 7[
2 3 6 ,5 1 -1

1 4 7[32 9 0 ,1 ' -1

36 11 0[
32 9 0 ,5 1 -1[ 14 2 0

32 9 0 ,5 1 -1

{4 2 0

O -7 0 ,5 1 -1

2 1 0

O 1 0

-1 1

2 0 0

0 1 0

-5 -1 1

1 0 0

0 1 0

-5 0 1

5
12 1

6
1

12

1
0

0
1

0
0

1
0

0
1

0
0

1
-8 0

-1
0

1
0

1
0

0
1

0
0

1
0

-1
1

0
-1 9

0

2
1

3
0

0
1

0
6

1
71

6
1

1
6

1
1

-2
1

1
-2

1
;

1
0

0
0

1
0

0
0

1

9 11 3

14 14 148 9 2

7 7 7
o -1

9 11 3

28 28 288 9 27 7

8 9 5

7 ;' 7 7

(Sage

an

9 5
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9 11 3
1 0 28 28 28

8 9 2
0 1 0

7 7
13 19 5

0 0 1 28 28 28

Check:

9
28

8
7

13
28

11
28

_ 9
7

19
28

3
28

2
"I
5
28

1

2

5

4

3

1

7

6

1

1

0

0

0

1

0

3. (a) 1
2

5

4
3
1

7

61
x
y
z

(b)

(c)

(d)

9 11 31
28 28 28

8 9 2

13 19 5

28 28 2

9 11 3
2 8 28 2

8 9,
7

13 19 5

2 8 28 2
_ .

_

9 11 3

28 72.7 2

8 9 2

7 7
_

1 13 19 5

L- 28
_

28 28

[page 11.7.1
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7

3

0

2

1

3

4

3
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2

28

3

27

16
7



4. X urn

r

y vns

z w
p

t

5. (a)

1 1 1

- 7 2 2

7 1 3

13-

8 8

5 3 1
8

1 1 1 2-2-

1-

.

9 1 32a- -8-

11 5 1

88

-3 T
i

33 1 6 2

0 1 1 0

4 3-9

3 2 2 1 12 10 12 1 4 6 13 8 T
y-1 1 5 1 5 7

1 0 0 0 0

0 17 0 = 0 1 0 .

1

17 0 0 17 0 0 1

(b)

1 12 10 3 2 21 6 13 8 2 1 4

17 1 5 7 1 1 5

[17
0 01 1 0 01 0 17 0 = 0 1 0

.17 0 0 17 0 0 1

11
2

6. 3 2 2 1 12 10 x

I{ 1
3 2 2

2 1 4 6 13 8 y = 2 1 4

1 1
_

5 1 5 7 z

[-1 1 5

17 0 0 x

[ 1 [
51

1

0 17 0 y . 34 90 0 17 z 17

7. 2x + y + 2z 3w 0 ,

4x + y + z + w = 15 ,

6x y z w = 5 ,

4x 2y + 3z w = 2 ;

L32
9 7
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U
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2 1 2 -3
4 1 1 1

6 -1 -1 -1
4 -2 3 -1

1 2 -3
4 1 1 1

[2

6 -1 -1 -1
4 -2 3 -1

2 1 2 -3
1 0 0 0

6 -1 -1 -1
4 -2 3

0 1 2 -3

1 0 0 0

0 -1 -.1 -1

0 -2 3 -1

0 0 1 -4

1 0 0 0

0 -1 -1 -1

0 0 5 1

0 0 1 -4

1 0 0 0

0 1 0 5

0 0 5 1

0 0 1 0

1 0 0 0

0 1

0 0 5 1

,

x-
y
z
w

1

0
0
0

1

0

0

0

1

0

0

0

0

0

0

1

0

-1

0

0
1

0
0

0
1

10
0

0

1

5
1

10
3

2

4
5

1

10
3

43

4
5

1

10
7

3
4
5

0
15

5
2

0
0
1

0

0
1

10
1

0

10

10

-

1

10

1

5
1

2

2

3

1

1

2

63

1

5

3
5
6
5

0
0
0
1

0

0

0

1

0

0

0

1

0

0

1

0

0

0

1

1
21

0

0

4
35

1
10

7

4

23 1

21

0

0

1

105

10
3
5
6

Ipage
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O 0 1 0

1 0 0 0

O 1 0 5

O 0 0 1

O 0 1 0

1 0 0 0

O 1 0 0

O 0 0 1

O 0 0

O 1 0 0

O 0 1 0

O 0 1

1

21

0

1
5

21

1

21

0

4
21
5
21

4
35
1

10
7

8
35

4
35

1

10
9
35
8

35

23 4
21

0

0

1

21

4
21

0

5

21
1

21

105
1

.10
7

5
11.

105

23
105

1

10
8

105
U.

105

1
0

10
4 9
21 35
1 4
21 35
5 8

21 35

1 1
0 0

10 10
4 9 8 5_
21 35 105 21
1 4 23 4_
21 35 105 21
5 8 11 1*_
21 35 105 21

2

3

8.. 9x y = 37,
2z 4,

7z 3w 17,

2x + .2 14;

9 1 0 0
O 4 1 0
O 0 7 3
1 0 0 3

1

10
0

8 5

105 21
23 4

105 21
11 1

105 21

0

15

5

2

37
2

17
7

page 1161

9 9

89



90

9 1 0 0 1 0 0

0 4 1 0 0 1 0

0 0 7 3 ' 0 0 1

1 0 0 3 0 0 0

9 1 0 0 1 0 0

0 4 1 0 0 1 0

1 0 7 0 ' 0 0 1

1 0 0 3 0 0 0

9 1 0 0 1 0 0 0

36 0 1 0, 4 1 0 0

1 0 7 0 ' 0 0 1 1 ;

1 0 0 3 0 0 0 1

9
36

253
1

9

36

1

1

0

36

1

1

0

36

1

0

1
0
0
0

1
0

0

J

1
0

0

0

1
0

0

0

01
0
0

0

1
0

0

0

1
0

0

0

1
0

0

0
0
0
3

0

0

3

0

0

0

'

1 0 0
24 1 0

1

0 .; 0

1 0 0

4 1 0

28 L L

0
0

11 ;

0

0

L

9

253 253 253
0 0 0

1 63

253
1

9_
253 253

4 1

28 7

253

0

1

253

9

253

0

1

253 253

1 63

253

1

9

253 253

4 1

28 7

253 253

0 0

1 1

253 253
28 7

253 253
1 252

253 253 253 253
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0 1 0 0

0 0 1 0

1 0 0 0

0 0 0 3

lobo
0 1 0 0

0 0 1 0

0 0 0 1

1

253

1

253

'

28

1

4
28-

1012

253
506

253

11.

1

1 63 9
-253

36

9
255-

36
Th.
_IL

253
252
253

1

+ 9

36

+84

;

_
253 253
4 1

253 253 253
28 7 1

253 253
28 7

253
1

253
_

253

.28 7

1 +63

4 1

28 7
T

253

1

+ 9

36
1

3

253

7 1 1 37

63 9 9 2

1 36 36 17
7- -3- 1- 3 84 7

4

a
2

1

3-4. Linear System of Equations

In this chapter we carry out the actual solution of AX cs B. The techniques

involved were developed in the earlier sections and are simply combined here

and used to solve systems of linear equations. The parallelism between elementary

row operations on the matrices and the procedures used in Section 3-1 should be

emphasized.

The discussion about the existence of solutions of systems of linear

equations may be amplified to include the ideas of linear dependence. In general

a system wherein no equation can be obtained from a linear combination of the

remaining equations is said to be a linearly independent system. If ie is

possible to obtain one of the equations as a linear combination of the remaining

equations, then the system is said to be linearly dependent. For instance, the

three equations,

[Pages JO-3233
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x + 2y i= 3,

x y + z = 4,

4x y + 2z = 14,

which appear on page 120 in this section is a dependent system. Note that if

the second equation is multiplied by 3 and added to the first equation, then

the result is the third equation. Thus the third equation is a linear com

bination of the other two.

Generally, when the equations of a system are not linearly independent,

there will be more than one solution, and therefore an infinite number of

solutions, in the solution set.

Although the language of the chapter must necessarily be complex in order

to describe what might be tersely described as "the normal course of events,"

there are three possible eventualities that the diagonal method will produce;

(a) a contradiction of the form

0 = b,

where b is not 0, so that the set of equations has no solution;

(b) a unique solution of the form

xi = bi

for all i;

(c) an infinite number of solutions in which some of the variables are

expressed as linear combinations of the remaining variables, which might be

assigned arbitrary values.

The exercises are routine practice in the solution of simultaneous systems

by means of matrix operations.

Exercises 3-4

1. (a) 3 planes parallel.

2 planes parallel, 3rd intersecting them.

3 planes collinear.

2 planes intersecting, 3rd intersecting them but not collinear with them

3 planes concurrent.
Wages 149whoj
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(b) 3 planes coincident.

2 planes coincident, 3rd parallel to them.

2 planes coincident, 3rd intersecting them.

2(a) x + y + 2z = 1,

2x + z = 3,

3x + 2y + 4z = 4;

1

2

3

1

[0°

1

0

0

1

0

0

1

0

0

0

[1

0

2
5
4

[

1

0

2

1

2
1

0

2
1

0

2
0

0

2

0

1

0

0

2
1

2

1

4

2

2

0

3
2

0

3
1

0

0

1
-- y

0

0

1

1

3

2

,

,

,

,

,

0

0

2
3

2
[

2

3

2
2
2

[

10

[

2

2

2
5

1

3

4

1

0

1

0

1 1

1

0

0

1

0

-2-

0

2
41

0

0

1

0

0

1

1

0

1

0

1

1

7

0

4 6
1

1

3

2

2

1

1

2

1

-1

;

1

0

1

1

1
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2 . (b) 1 1 1

1 1 2

O 1 1

1 0 0

1 1 2 ,

O 1 1

1 0 0

1 1 0

O 1 1

1 0 0

O +1 0 ,

O 0 1

1

0

0

1

0

0

1

0

0

1

0

0

1

1
0

;

;

0 0 1

1 0 1
0 1 2
0 0 1

1 0 1
1 1 1

0 0 1

1 0 1
+1 1 +1

1 1 0

1 0

1 1 1 7

1 0 1

0

1

(c) x 2y + z 1 ,

2x + y z = 1 ,
x + y + z .2 4 ;

1 -2 1 1 0 0

2 1 1 , 0 1 0 ;

1 1 1 0 0 1

104
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2 1

0 5 3
0 3 0

1 o

O 5 3
O 3 0

1
1 0 -s-

O 5 3
O 0

9

1

3
3

9
5

1 0 0

O 1 0

O 0

1 0 0

O 1 0

O 0 1

9

1 0 0

2 1 0 ;

1 0

1 2
5 5

1

.1 0

1 2
5 5

2 1 o ;

1

5

3
5 1

1 2
5 5
2 1
3 3
1 3
3 5

0

0

1

2 1 1
9 3 9
1 1
3

0
-5

1 1 5

1

1

4

1

1

2

105

[page 123]
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(d) 2v + x + y + z = 0?

v - x + 2y + z = 0,

4v - x + 5y + 3z = 1,

v - x + y z = 2;

2 1 1 1 1 0 0 0

1 -I 2 1 0 1 0 0

4 -4. 5 3 0 0 1 0

1 -I 1 -I 0 0 0 1

2 1 1 1 1 0 0 0

3 0 3 2 1 1 0 0

6 0 6 4 o 1 o

3 0 2 0 1 0 0 1

2 1 1 1 1 0 0 0

3 0 3 2 1 1 0 0

0 0 0 0 -1 -2 1 0

3 0 2 0 1 0 0 1

2 1 1 1 1 0 0 0

3 0 3 2 1 1 0 0

0 0 0 0 -1 -2 1 0

3 0 2 0 1 0 0 1

2x + y + z + w = 0,

3x + 3z + 2w = 0,

0 0 1,

3x + 2z = 2.

No solutions.

(e) 2 1 1 1 1 0 0 0

1 2 1 -I 0 1 0 0

4 5 3 -I 0 0 1 0

0 0 0 0 C 0 0 1

[pages 123-124]
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2 1 1 1 1 0 0 0

3 3 2 0 1 1 0 0

6 6 4 0 1 0 1 0

0 0 0 0 0 0 0 1

2 1 1 1 1 0 0 0

3 3 2 0 1 1 0 0

0 0 0 0 1 2 1 0

0 0 0 0 0 0 0 1

2 1 1 1 1 0 0 0 2

3 3 2 0 y- 1 1 0 0 1
0 0 0 0 z 1 2 1 0

0 0 0 0 0 0 0 1

2x + y + z + w = 2,

3x + 3y + 2z

0 = 0,

0 = 0.

An infinite number of solutions. You might, for example, give values

to x and y and determine corresponding values for z and w.

3-5. Elementary Row Operations

The purpose of this section is to interpret the row operations in terms of

the more fundamental operation of matrix multiplication. We should perhaps

stress that matrices of the form J, K, L2 are the only ones we call elementary

matrices. Their inverses j-
1

,
1

3 L
-1

, turn out to be matrices of the same

form. Same students will be quick to note the form of the product of two

elementary matrices, such as

0

0

0

1

1

0

1

0

0

0

2

0

0

01

1

=

1

010,
0

0 0

2 1

[pages 124-129]
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and will be tempted to decompo-e matrices into factors of the latter form. We

feel that such students should be complimented for their insight but must be

cautioned that the matrix

0

0 1

0 2

0
1

is not an elementary matrix.

Another point that should be stressed is that to perform our row operations

we multiply on the left by elementary matrices, and the student must remember

that matrix multiplication does not commute. Thus

0 0

O 1 0 0 2 0

O 1 1 0 0 1

will first multiply' the second row by 2 and then add the second row to the third.

On the other hand,

0 0

O 2 0 0 1 0

O 0 1 0 1 1

will first add the second row to the third and then multiply the second row

2. For comparison, we have

and

0 0 0 1 0 0

O 1 0 0 2 01 = 020,
0 1 1 0 0 1 02.1

0 0 01 0 0

O 2 0 0 1 01 0 2 01 ,

O 0 1 0 1 1 0.11

which are quite different.

The important thing here is for the student to understand that he can

perform a row operation on a matrix by leftmultiplying the matrix by an

108
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elementary matrix, and that all matrices obtained as a result of such multipli-

cations are row equivalent. In particular, any matrix that has an inverse is

row equivalent to the inverse.

The exercises are designed to fix the idea of row operation by means of

left multiplication of elementary matrices. Exercise 1 is concerned with the

determination of some elementary matrices. Exercise 2 asks that a product be

decomposed into elementary mat.' .ate that in this ex,rcise the

answer is not unique, but C multiplying will determine the

nature of the elementary Mil,7 _ise 3 is designed to show the sty'

that if he can find a set of elementary matrix factors of a given matrix he

can find the inverse of the given matrix.by finding the product of the inverses

of the elementary Matrices. These matrices can be written by inspection,

although the order of the multiplications must be reversed in accordance with

-1 -1 -1 -1 -1 -1
A = = En ,...,E3 .E2 .EI .

Exercise 4 leads the student toward the generalization of the concepts we have

already studied in the case of 3 x 3 matrices. Exercises 8 and 9 are designed

to lead the student into a consideration of column operations.

1. (a)

(b)

A

A =

8

1 2

0

0 -/

1 0

0 1

0 -1

1 2

0

0-1

[1 1

0 -1
0 0

3

21
1

0

01
1

3

21
1

-1
01
1

=

.

=

.

Exercises 3-5

1 2

t-1 0

1 -1

0 3

1 0

1-1

3

21 ,

-1

4

-21 ,

1

109
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I

r
2. (a) 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0

0 -1 0 - 0 1 0 0 1 0 0 1 0 0 1 0 0 -1 0

3 1 1

8 8
0 0 g 0 1 1 0 1 1 0 1 1 0 0-1

The solution here is not unique. There are others. For instance,

1

1 0 0 1 0 0 1 0 0 1

8 3
0 3 0 0 1 0 0 0 0

0 0 1 0 1 1 0 0 0 0

The same remr holt. 2(b) and 2(c).

(b) 1 0 0

[

1 0 0 1 0

O 1 -5 - 0 1 0 0 1

O '0 1 0 0
13 0 0

( c ) 1 -1 1 1 0 0 1 0 1

O 1 0 = 0 -40 010
O 0 1 0 0 1 0 0 1

[

3. (a) 1 0 0
-1

1 0 0 1

O -1 0 = 0 -1 0 0

3 1
0

8 a-
0 0 -1 0

0 0

= 0 -1 0 .

0 3 -8

-1
(b) 1 0 0 1 0 0 1

O 1 -3 0 0 1 0 0

001. 0 0 -1 0

1 0 0

O 1 3

O 0 1

0 0 1 0 0

-1 0 0 1 0

0 1 0 0
1-
8
-

0 1 0 0 1 0 0

1 0 1 0 0 1 0

1 0 0 3 0 0 -1

1 1 0 1 0 0

010 0-1 0 .

0 0 1 0 0 1

0 0 1 0 0 1 0 0

1 0 0 1 0 0 1 0

-1 1 0 -1 1 0 -1 1

0

1

0

0

0

1
-5

1

0

0

0

1

0

0

-1

1

1

0

0

0

1

0

0

0

-3

[pages 129, 130]
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[

(c) 1 1 1 1

0 1 0

0 01

4.

5.

J type:

L type:

x y 2z

y + 3z

0

0 n
0 0

0 0

1 1

0 1

0 0

0 0

1 0

0 0

0 0

0 1

= 3,

= 5,

0

0

1

0

0

0

1

0

0

0

1

0

2x + 2y 3z = 15;

1 1 2
0 1 3

2 2 3

1 1 2
0 1 3

2 2 3

1

1 0 0 1 1 0 1 0 1 1 0 0

= 0 1 0 0 1 0 0 1 0 0 1 0

0 . 0 1 0 0 1 0 0 1 0 0 1

1 1
0 1 01
0 0 1

0

0

0 '

1

0

0

0

1

0

1

0

0

3

5 ;

15

multiplies the second row by n.

adds the second row to the first row.

interchanges the second and fourth rows.

9 7 1

11 11 11

6 1 3

11 11 11

2 4 1

11 11 11

9 7 1

11 11 11

6 1 3

11 11 11

2 4 1

11 11 11

112
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6. (a) 1 0

O -1
2 0

1 0
O -1
1 0

[0 0

O -1
1 0

1.0 0

O -1
1 0

[0 0

O 1

1 0

(b ) "k_ 0

a) -1

0

1

2 $ 0

1 0

1

2 0

[-10

11 2

2 0

1.-10

11 2

0 -43

0 -1

11 2

0 4
0 -1

0

[1
4

1 2

0 01
1 0 ;

0 1

10 0

1 0 ;

0 1

0-1
-4 -2 ;

0 1

-1 0 0 1 1 0

2 0 1 0 0 -1

1 1 0 0 0 0

1 0 -1 1 0

0 1 0 0 1

0 0 1 -1 0

-1 0 1

4 -1 -2 .

2 0 -1

0

0

1

103

0 0 1 0 0 2 0 0

1 0 -4 1 0 0 1 0

0 1 0 0 1 0 0 1

(c) The aaswer to 2(b) is not unique. "lie order in which certain of the

a7wrazions may be carried out is artitrary.

113
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7. By Theorem 3-1, we know that

( AB ) -1 = B-1A71 .

This is the first step in the proof by induction.

Suppose we know that

Then

-1
(AB...J) = j

-1
...B

-1 -1
.

(AB..!JK)-
1

= ((AB. .J)K)
-1

1

by the associative property for matrix multiplication, whence

(AB...JK)-
1

= K
-1

(AB...J)-
1

by Theorem 3-1, ,sm that

(ABJK)-1=K -1 (J
-1

...B
-1
i-

1
)

by the induction hypothesis. Accordingly, we have

- -1 -4
(AB..JK)

-4
= K

1
J ...B

-1
A ,

and the induction is complete.

. (a) a b c 2 0 0 2a b c

d e f 0 1 01 rl [ 2d e f .

g h i 0 0 1 2g h i

(b) b 0 1

d e f 0 1 01
g h i 0 0 1

a b a+ c
I.. d e d fl

g h g+ i

(c) a b c 3 0 0

[

3a 2b 4- c 'c
d e f 0 2 01 = [3d 2e 4- f

A-

.

g h i 0 1 1 3g 2h i i

[page 130]
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9. Right multiplication of matrices by matrices formed from the,products of

elementary matrices produces changes in columns similar to the changes

made in rows by left multiplication by elementary matrices.

3-6. Summary

This section quite deliberately is somewhat more than a summary. In it,

the student reviews the procedures introduced in the chapter, but with slight

variations calculated to give him a true mastery of the techniques involved.

The method developed earlier in the chapter is here called the "diagonaliza

tion method" and is contrasted with the "triangularization method you

stress these phrases to the class, along with the suggestive word, "pivot."

The triangularization method is exemplified by system III, and the diago

nalization method by system IV, on page 104.

You might point out to the class that the triangularization method is an

excellent systematic method for solving a single set of linear equations. (The

diagonalization method is usually more efficient when two or more systems with

a common matrix of coefficients are involved.) Thus, the last equation in

system III might be solved for z, the result substituted in the second equation

to yield a value for y, and then the two values substituted in the first

equation to determine a value for x.

You should also note the streamlining of the diagonalization method through

the introduction af complete pivoting. This notion was possibly too involved

for the class at the start of the chapter, but it should be quite easy at the

end.

For review exercises, you might reassign some of the problems already

assigned; but this time have the class use the triangularization method and the

streamlined diagonalization method.

115
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Chapter 4

REPRESENTATION OF COLUMN MATRICES AS GEOMETRIC VECTORS

4-1. The Algebra of Vectors

In this chapter, a considerable change is made in the nature of the subject

matter. Although it may be helpful to study Chapter 2 and Chapter 3 before

Chapter 4, this is not necessary since the present material is largely indepL:Aent

of those two chapters. Students will I-. nbl- Lu uu. material of Chapter

4 if they are proficient in the operations of matrix addition and multiplication.

In fact, Chapters 1 and 4 together make a worthwhile unit if time is limited.

In Chapter 4, the:subject of vectors is introduced. The pace is gentle at

:the beginning in order-to allow sufficient time for the students to become

familiar with this new mathematical concept. In Chapter 5, linear transformations

are introduced. The=material of the latter chapter is considerably more difficult

to comprehend, and a-teacher should not contemplate handling Chapter 5 unless the

class can easily handle the material of Chapter 4. Also, the time needed to

understand and complete Chapter 5 is greater than the time necessary to handle

Znapter 4 adequately.

In Chapter 4, the exercises vary from simple and straightforward to difficult

and abstract. Careishould be taken in assigning these problems. Some of them

will extend even theimost capable studenrn, particularly the exercises dealing

with n-dimensional vectors.

In Section 4-1, we-consider a special set of column matrices, namely the

2 x.1 matrices [a] where a and b are real numbers. By definition,
b

such a matrix is called-a column vector of order 2. Since these vectors actually

areimatrices, all the familiar rules pertaining to matrix operations hold for

them, as summarized in the two theorems stated in this section. Although the

information contained in the theorems is familiar, it is well to review the

theorems at length and to do all the exercises involving these theorems in order

to establish clearly in the students' minds that column vectors are matrices.

If time is short or the ability of the class is modest, it is better not

even to begin a discussion of column vectors of order n. While able students

will Ebs,challenged by the concept of an n-dimensional vector, and it is relative-
.

ly easy-to work with the algebraic properties of these vectors, a difficulty

arises vith their geometric interpretation or representation. This stresses the
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fact that it is important to continually assert that the column vectors or

matrices have an algebraic life of their own quite independent of any geometric

interpretation.

Exercises 4-1

1. I. (a) V + W = W + V:

[

7'1 [11 { 431

3
[341

(b) (V + W) + U = V + (W + U):

[ 43 + [1] ) [ 2
]

[ [..1 [-73 ;

3
{43 + ( [11 { 2 }) [41 + {-63 { 71

(c) V + 02 x 1=
V:

(d) V + (V)

k [gl [341

II. (a) r(V + W) = rV + rW:

0

01 = 02 x r

2 ([43 + L-211) 2 [151 [1021 ;

2 [3] 2 r-21
4 I lj

61 -4

117
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(b) r(sV) st (ra)V:

2((-1) [43]) = 2 [1]

3 3
(2)(-1) [4] 2 [4]

[11

(1) [43] = [341 ;

(c) (r + s)V = rV + sV:

(2 + (I)) [431 =

2 [3.1 + (-1) [43] =
1.4

(d) OV = O.

(e) 1V = V:

(f) r0 0:

6 -3
[8] + {_4]

[341

[ 341 I1I1
= 0

(1)
[341 [341

2 [gl = [(o)1

III. (a) A(V + W) = AV + AW:

O 3

[32 ( [Li

[3 01 [3 01
2 1 4

[3]
2 1

= 0

3 Oil [151
2

{-2] [9] [-61 [ 3]
1 2 5 3

118
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no
(b) (A + B)V = AV + BV:

{ 32 I ( 21 [ 43 1 [ 04 1 [ 43 { 1 06 1ij)
[32 011 { 341 L21 I [341 [ 92 I [_72 [106 I

(c) A(BV) (AB)V:

[3 01 ([ 1 11 {3 [3 01 [ 71 21

2 1 2 1 4 2 I. 2 161 ;

211 ID [11 [L3,

(d) OV = 0:

(e) IV = V:

[0° 0°1 [43.1=0°1 °

011 [431 = 431

21

(f) A(rV) (rA)V = r(AV):

13 0_11 [ 341 [32 011 [861 11841

1 3 1[ [3 641 [4 [4 [1841

[ 91
2

[181
[ 23 011 [ 341) = 2

2

2. Since addition is associative and commutative, we can rewrite

AV AW = AW + BW

[page 135]
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in the (pussibly simpler) form

Further, since

A
-1

exists, and we have

or

Now,

so that

AV = 2(AW) + BW.

NA) = 14 0 0,

A
-1

AV = 2(i-
1 A)W + (A-

1
B)W,

V = 2W + (A
-1

B)W.

1

A-1 =
7 14

2 5 '

14

V = [3:1

18

6

[181

6

[16 57

7
97

or

48

7

[1177 I

[page 135]
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3. We can first solve the given equation for V, thus:

We now compute

2V + 2W = AV + BV,

2W = AV + BV 2V,

= (A + B 21)V,

V = 2(A + B 21)-1 W.

[0 0
A + B =

0 01 '

[-2 0
A + B 21 =

0 21 '

1
0

2
(A + B 2I)

-1 a 11 '
0 y

01
2(A + B 21) [ 1

4. A(3V A(BV),

41-4 A(3V) 22 A(BV).,

1(3V) = I(BV)

(13)V = (113)V,

(31 IB)V E. 0,

B a

31 =

(31 IB) =

[2 1

1 21

[3 0

0 3 1

1
[..-

'

'

1

1

'

V = (-1)IW

[021
= - w

121
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1v2 = 0,

11/1 + 1v2 = 0,

V
1

, eV1 R.

a
11

a
12 11Iii

5. (a) A 1.131 k21 8221 a
21

I.

0 all 812 0 8
12=

a
21 822 1

822

(c) If , then all = 0, a21 = 0.
a
21

0
r12 1

If = {01 then a12 = 0, a22 = 0.
a
22

(d) Theorem. If A is a matrix of order 2, and if for every column

vector V of order 2 we have

AV = 0
2x1

then A Is the zero matrix 02x2*

(a) Theorem. If A is a matrix of order n, and if for every column

vector V of order n we have

then A is the zero matrix

AV

0.nX n 122
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111e

a
11

a
12

a
13

(b) Let A = a
21

a
22

a
23

.

a
31

a
32

a
33

Now

11

0 a
12

A )3

1

a

m 1
a21 '

31

A [11 =

0 a
32

a
22

A [001 = 1:133

1 a
33

-

1:11211

a
31

a

If m

[a

132:1 to

a
32

a

[ a21331and if =

a
33

0

0 , then a
11

= 0, a
21

= 0,

0

0

0 , then a
12

= O., a
22

= 0,

0

0 , then a
13

= 0, a
23

u 0,

Hence A is the zero matrix.

a
11

a
ln

(c) Let A =

a
nl nn

'Now

A[011

0

=

a
11

,

a
.1111

A

0
1
0

0
a
2n

[page 1361
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a
31

= 0;

a
32

= 0;

a33 = 0.

a
ln
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If IS then all = 0, au = 0,...,ain = 0;

and if

Hence A

a

a
nn

is the zero

0

0

then

matrix.

a = 0,...,ann = 0.

7. We are given that AV = V for every V. This gives us a great deal of

freedom to attempt to simplify the problem. Let us look for some V that

will make an easy computation (cf. G. POlya, How To Solve It, Anchor

Publishing Co., paperback).

[(i) V = g makes everything easy, but unfortunately gives us no

information.

(ii) V = [1] gives us this:
0

a bi [l I

c =

[ 11

1[ 0]

At this stage we know that A must be

[1 b

0 di

but we do not yet know what restrictions, if any, must be put on b and d.

(iii) Let's try another V. If AV = V l'olds for all V, then, in

particular, it must hold for V

This gives us

[1 bi [0] 1.0

0 d 1] '

[page 136]
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3.3,6

fbi

Vi [fl

and we now know that A must be

Theorem. If A is a matrix of order 2, and if for every column

vector V of order 2 we have

then A = I.

Note: This leaves one question unanswered. We have found that A Es I

is a necessary condition for AV == V. Is it also sufficient? Yes, it is.

We prove this as follows:

[1 01] {x21

2

as we discover by multiplying out IV.

We could, consequently, strengthen our theorem to state that AV = V

for all V if and only if A 3= I.

8. Theorem. If A is a square matrix of order n, and if for every column

vector V of order n we have

then A = I.

Proof. Let

AV V,

a
11

a

nl
a
nn

and V=

Now 125
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:zentce

hence

A
0

0

Oa

1

0

0

and A
0

0

,71

a
11

a
21

a
n1

au xi 1 a a
31

a a a . = 0.

A

0

1

0

1

0

0

and A

0

3.

0

0

I

i

_2

[an2

a
12

a 0
'

a
22

a 1
'

a
32

a a
42

a a a
n2

a 0.

Continuing, we see that

a
ij

a 1 for all i

a
ij

a 0 for all i 0 J.

117

9. Theorem 4-1'. Let V and W be row vectors of order 2, and let A be

a square matrix of order 2. Let r be a number. Then

V + W, rV, and VA

are each column vectors of order_ 2.

Theorem 4-2'. This is identical with Theorem 4-2 except that the word

"column" must be changed to "row", and products of the form

b)c d x2 '

[page 136]
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whaste,ver .P.sey occur, must be changed to

a
x
1 x2 (c

Th leans the following changes:

Ir (a) momes (V + W)A = VA + WA,

(b) -4*comes V(A + B) = VA + VB,

( 1-comes (VA)B = V(AB),

1)1 becomes V 0
2
=

lx 2'

tte, Awcomes VI = V,

heromes (rV)A = V(rA) = r(VA).

to show the isomorphism, map every matrix into its transpose,

wri tIverT:Irnolumn vector as a row vector, and reverse the order of products

as ,t ha*, :rust done above.

4-2. Vectxte and their Geometric Representation

Imthis section, a correspondence is established between the set of all

column vPr-inrs of order 2 and the set of all located vectors in the plane.

As this copt is developed, students are apt to use the term 'vector' loosely

and eventually persuade themselves that the column vectors (matrices) and the
. ...

..

arrows are ormt.and the same thing. This idea is to be avoided Since it liMits

the power:e: vector concept considerably. For instance there is a very
,

77 important akzeenzLic life bora vector with six entries a/though this has no

geometricteparseatation of an ordinary nature. The geometric representation

enables the student to visualize the algebra and helps him comprehend the

relationships; it does not 'prove' the theorems of the algebra nor does it-limit

the operations.

At the beginning of thesection, a column vector is associated with a

located vecto., that is, a-vector with a fixed length and a fixed direction and

aaarbitrery dmitial poiat. 'The two properties of a geometric vector,_length

and- directionL, arm-equally well represented by each element of a set, (The

latter it sometimes labeled an equivalence class of vectors.) We say the vectors.

[pages 136-142]
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in the following diagram are equivalent.

The concept of equivalent vectors has great power and is immediately applicable

to proofs of familiar plane geometry theorems (See "Geometrical Vectors and the

Concept of Vector Space " 23rd Yearbook National Council of Teachers of

Mathematics.)

Since it provides a uniform pattern that will bring about a greater class

cohesiveness and yet not sacrifice any desirable power, we quickly introduce a

standard representation. By this time, the students will be somewhat familiar

with a located vector and the idea can be reintroduced when needed to increase

understandine,.

Two properties associated with the directed line segments that correspond

to column vectors are length and direction. Note that for-re column vector

the symbol IIVII stands for the length of the directed line.segment; it is

:equal to the nonnegative square root of u2 v2:

IIVII = .N/U 2 + v
2

.

[pages 136-1423,
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The direction of thn: t,ment is liven by the two direction cosines. In ele

mentary algebra we h a. to esiouulare a slope with a line segment; but direction

is not specified by T ,:ing the slope alone, since a line .44..th a particular-slope

may have either of differ=t ddrections, or not be-Icted at all. For

instance, a line with slope 314 ey be consi:dered as 7r:cr.:ring toward the upper

rdght as well as toward the Lcer left.

In order to avotc certain inconveniences that wooldherwise arise, -rde

rrbitrarily choose to say thza.:he zero vectar is a direct-ad line segment and

that it has the same directiodas any other vector. If this were not:done, the

presentation would not be so elegant, since exceptions would occur.

1. Same length: (c), (e), (f).

2.

Exercises 4-2

Same direction: (a), (d) (because the zerc veotor "has the same

direction as any and every other vector"; see p. 165 rop), (g), and (j),

provided that t > 0.

Some pairs lie along the same line, but not alohg the same ray

(i.e., they have "opposi=e" directions). These are (S)), (d) (again,

because of the universal direction of the zero vempor), and (j) if

t < 0 (note that t = 0 also gives us the zero vector).

t 1

129
(pages 136]42]



t = 2

t = 3

130
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A

I 4 4 I I , I fgx

t 1

t 2

[page 142:3
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WI

(-6,7.9)
t = 3

at is also Inmeresting= compare

diagmam:
[231

123

x

and 3. { in the same
3

4.--

:

1

I

1
i

,

lif'

(6,9)

/

r

(43)
I

I

I

I I

[pagE142]
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3. (a)

The lengths and direction cosines 06 p are as follows:

t Length a P

1 )13 2/)5 3/)15

2 2/15 2//r5 3/115

3 3/15 2/115 3/115

-4 / Y -2/A3 -3//13

-2 2115 -2/115 -3/115

-3 3/115 -2/111-3. -3/11.5

[ I

Vector Length a (3

Pil

1 1 0

[01
1

1 0 1

[1]
1

/I 1/)7 WIT

[pages 142-143]
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(b)

(c)

Vector Length a I 3

[ Oi I
1 1 0

{fl 15 3/1173 2/1/13

[421 215- 2/15- 1/1r5

[page 143]
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(a)

S. 0 1431



(e)

4. V

127

7
I .X

Vector Length a 13

[ 51
ir4T. 5/1/4i. 4/1Fil

[221 2-5 1/fi 1/fi

[-72.]
ig-5 7 A 3 2 /-/-5-5

4*) m = 1, b 0;

t 1; V =
1

[page 1433
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t = 2;

t on-1;

t 2;

t = 0;

It I I 1. X

x

lox

In each case, the point (x,y) is located at the tip of the arrow.

An important theorem tells us that these five points (plus the in

finitely many points obtained from other values of t) must all be collinear:

(b) We show here the five vectors on a single diagram. Again, the five

"arrowtips" are collinear.

[page 143]
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(c)

5. If A and B lie on the same ray from the origin, Oeir direction cosines,

evidently, are equal. If A and B do not lie on the same ray from the

origin (as in the case shown in the figure),

138
(page 143]
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then they have "opposite" directions; thus if

then

[ ta
B =

tbl '

where t < 0. The direction cosines of A, then, are

and those of B are

a

la 2 4. b2 V/a 2 + b2

a

Itl
v1 a2 b2

ItI
,/112 b2

Since t < 0, = 1, and the direction cosines of B are the
Itl

negatives (or "opposites") of those of A.

6. (a)
[u]
v

. t [11
2

= [ t

2tI '

where t E R.

(b) t
[-11 [t

3
. 3t] I.

(c) t
[1 I [ tl

3
=

3t] '
which, of course, is the same as

(d) t
[ 11 [ t

1 = ti

(e) t
[01 [ 0
3

=
3tI '

which could also be written
Vtl)

139

5t

15t1)
[
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4-3. Geometrical Interpretation of the Multiplication of a Vector by a Number

The ideas presented in-this section can easily be grasped intuitively. To

present proofs is somewhat more challenging. This is a situation that occurs

frequently in mathematics. Although it may be cumberSome and seem unnecessary

to the less sophisticated students, unless we are to extend our postulates or give

an intuitive exposition, we must give proofs of our conclusions or theorems. It*

is always easy to shatter an intuitiye conclusion by asking the very proper

mathematical question, "Why?"

As stated in Chapter 1, the multiplication of a vector or matrix by a

number is frequently referred to as scalar multiplication. This should not be

confused with the multiplication of a matrix by a matrix, or with the multipli-

cation of a vector by a vector.

1. (a)

(b)

(c)

(d)

(g)

[461

[:1

2

[- 11

k6c1

, where

[ 8t
12t1

[- 8t
-12t]

Exercises 4-3

x C R, x 0 9.

is one possible answer. There are infinitely many others.[id

Some other correct answers:

[ hO ' 2 hh ' [ h- h [ 17h'i [ h3h2+ 31

[pages 144-147]
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This last answer is tricky; it is true that [3h + 3 V L, ,since

2

3
3h

2
+ 9

leads to a quadratic equation with no real roots.)

2. (a)

(b)

. 3
[11

4
P a

V41

[12
1[page 47] 15

141

[

1 10

7 8]

4a ,

[ 43



are colanear, with

;:

[0
(f)

'

the zero vector, may be
01

direction of any vector;

3. Let

be direction cosines for

and let

113

[ fl
2

1

3 16
t

2
a = ,

[

1
2] 1 [.8

2 41

[[2
= 0

0 91

v
1

v
2

and

V =

w
2

w
1

and
IIWII I IWI I

[page 147]

142

assigned the



134

be direction cosines for

Since V and W are parallel,

v w
2

v
1 2

w
1

IIVII IIWII
, and

IIVII IIWII

v
1

v
2

Hence =
w
1

w
2

Since v
1,

v
2'

w w
2

are real numbers,

4.

Now

Hence

(a)

v
1

Let

Since

= rw

v,

2

kl

v

1

=

rvl

and

VI
v2
[I

=

rwl
[r

0,

v
2

w2 1

.

= rw
2

= r

Hence

and r

v
1

w
1

.

w

2

11

rV

0 0,

v2
=

2

, or

=

we

ar..

v
2

have

rW.

vl

v2

= 0; similarly,

0

0

r e R.

v2 = 0

(from the field axioms for real numbers). Hence,

vi 0

\

.312-

(b) Since rvl = 0, and vl 0 0, we have r = 0, as in part (a).

5. Let V =
vl

, so that V + rV =
1
+ rv

1
[(1+ r)v1

.2
v
2

+ rv
2

(1 + r)v21

[page 147]
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Direction cosines of V:

135

v
1

v2
a = =+ I vf+

Direction cosines of V rV:

v1 + rv
1

(1 + r)v1

2
(v

.1..
+ r)

,.2 2 2. /v2
vrv )2 + (v2 + rv 2) + v2)

1 1 1 2

+ v
2

+ v2
1 2

When r > 1, 1 + r > 0, and the signs are both + .

When r < 1, 1 + r < 0, and the signs are both .

2 2 2 2
I IV + rVI 1 = (1 + r) 2 (vi + v2) = 11 + r 1 + v2

IIVII Ii + rl.

4-4. Geometrical Interpretation of the Addition of Two Vectors

Through their study of physics, many students will be familiar with ,the

parallelogram of forces. In the physical sciences, a force can be represented

as an arrow. The length of the arrow indicates the magnitude or strength of the

force, and the direction of the arrow indicates the direction of the force. If

two forces act on a body at the same point, the effect is the same as though

the body were acted on by a single force. The single force, or resultant of the

two forces, is represented by the diagonal arrow of the parallelogram having the

two arrows representing the original two forces as sides.

When addition was studied in Chapter 1, we learned that the sum of two

matrices that are conformable for addition is found by adding together the entries

[pages 147-151]
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in the same position, pair by pair. When this rule is applied to column vectors

of order two, it means that we add the two first entries and then the two second

entries. When column vectors are represented as directed line segments from the

origin, then the first entry represents the abscissa and the second entry repre

sents the ordinate. The sum of the two vectors is represented by a directed

line segment OP such that the coordinates of the point P are the two sums of

the respective entries.of the original vectors. It is to be noted that no

exception need be made if the two vectors are parallel. The key to the proof of

the theorem-that a parallelogram is formed is the proposition from plane geometry

stating that "if the opposite pairs of sides of a quadrilateral are equal, the

quadrilateral_is a parallelogram."

Exercises 4-4

1. (a)
[951 ' [11

145

[pages 147-151]
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(b) 'hi

2 12
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In constructing the sum, the order does not matter. But in constructing

the difference the order must not be interchanged.

2. (V + W) + U:

V + (W + U):

148

[pages ]51-1521
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3. (a) { 6
71

(b)

(page 152)
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(c)

(d)

141

Epage 1523
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4. (a) V and W represent two geometric vectors equal in magnitude and

opposite in direction.

(b) A triangle may be constructed from three line segments having the

length and direction of the geometric vectors V, W and U.

(c) A quadrilateral may be constructed from four line segments having the

length and direction of the geometric vectors V, W, U, and T.

[ul [v [u + v1
V + W v + s 1

OT is the line segment from

= ..\/(u + ru)2 + (v + s

Slope of PR =
v + s v
u + r u

(0,0) to (u + r,. v + s). Length of

2 /2 2
length of

= slope of OT.

4-5. The /nner Product of Two Vectors

When addition was discussed in Chapter 1, the sum of two matrices of the

same order was defined. The sum was obtained by adding corresponding entries in

the two mateces. At that time, it may have seemed natural to obtain a product

by multiplying corresponding entries. Such a product, howevei, was not'defined.

When the "product" of two matrices is considered, the product obtained by

multiplying the elements of a row by the corresponding elements of a column, and

adding, is the product specified. As you recall, this product was motivated by

considering parts models applications and by considering linear transformations.

Although it was not so indicated in Chapter 1, the result obtained by

multiplying corresponding entries in two column matrices of the same order, and

adding the products, does have significance. This product has various names,

the commonest being inner product, dot product, and scalar product. The inner

product is a powerful operation that is very useful when considering perpendicu

larity (or orthogonality) and certain metrical questions. It is very important

to speak of the "inner product" and not permit confusion to arise through

slipshod use of the eingle word "product."

The most important fact concerning the inner product, about which students

must be ever mindful, is that the inner product is a number, not a matrix or

[pages 152-1571
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a vector. (In those texts where the multiplication of a matrix by a real

number is called scalar multiplication, the inner product is usually called the

scalar product.) Since the inner product is a number, it should not be enclosed

in brackets as vectors or matrices usually are. Also, if the inner product were

not a number, then such statements as

V W = IIVII IIWII cos 0

would be invalid.

In the present text, the inner product is introduced easily through con

sideration of certain geometric relationships. The basis of these relationships

is the law of cosines. The form in which the law of cosines is stated in the

text may be less familiar than

2 2 2
-I- ca = b 2bc cos A,

which is the form usually found in trigonometry.

After the operation has been introduced through geometric considerations,

the algebraic properties of the inner product are developed. Although the

discussion in this chapter is limited to vectors of order two, vectors of higher

order are said to be orthogonal if and only if their inner product equals zero.

The idea is extremely important and can be developed at great length.

1.

2.

(a)

(b)

(c)

(d)

V =

5

1
.

V2

1, parallel.

0, orthogonal.

1u I IVI I
v

Exercises 4-5

perpendicular.

orthogonal.

orthogonal.

(e)

(g)

(h)

0,

20

-g

0,

v/u2 v2

152
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V El u' V E2 v'

V El

I IVI I
1177-11 v2

V o E
2

IIVII v(u2 + v2

direction cosines of V.

3. (a) We know (Theorem 4-5) that

V W IIVII IIWII cos e.

Consequently, the equation

V W IIVII IIWII

is equivalent to the condition that

cos e ± 1,

which implies that 9 0 (cos_O 4- 1), or else 0 c (cos 0 1).

(b) The inequality Icos 01 < 1, together.with Theorem 4-5, implies

(11 w)2 < 1111112 1114112.

If we write this result in terms of the entries of V and W, we get

where

this simplifies to

(a2 b2)(a2 d2),
(ac bd)2 <

V = and W =
di ;

0 < (ad bc)2.

[page 158]
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(c) The present inequality is obtained from (b) by taking square roots.

The root of the righthand member is not negative, though that of the left

hand member might be.

4. This follows from Theorem 4-5.

We show first that if V W = 0, then V and W are orthogonal.

Since

IIVII IIWII cos 0 = 0,

then either

(a) IIVII = 0,

(b) IIWII 0 0,

(c) cos e o.

If (a) or (b), then either V or W is the zero vector, which is orthogonal

to any vector. If (c), then e 900, which means V and W are perpendicu

lar (or orthogonal).

We show next that if V and W are orthogonal then V W = 0.

lirst case: If V or W is the zero vector, IIVII IIWII cos e . 0.

Second case: If neither V nor W is the zero vector, then if they are

orthogonal, 0 = 90°, whence cos e = 0, which means

IIVII IIWII cos 0 = 0.

5. (a) 20.

(b) + 2.

(c) Nonparallel. (Another correct answer would be: "Equal in length.")

(d) 72.

(e) 3.

(f) 3.

6. (a) VoW=We V:

[1] [-23] [23] [1]

13 = 13.
[pages 158-1593
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(b) (rV) W = r(V W);

221(4 [-231) 43 1 (L3

2112 =-4(-13),[1 -3 6

52 = 52.

(c) Vo(W+U)=VW+VoU:

(d) V V > 0:

[231)

[fl)
I. [231

[22]
= 13 7,

20 = 20.

3
21 [-21

= 13 > 0.
3

[al7. Let U V =
[cd]

W =
b ' f

(it) tribi4=Tastr:
r r[ 1 [-I [:I
fJ

ce + df = ec + fd,
ce + df = ce + df.

(rV) W = r(V 14):

[11) [71 ([:1 [7])
155
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(b)

{rc

rd [71
r(ce + df),

rce + rdf rce + rdf.

V(W+U)=VW+VoU:

[: Gef

[ I [

]

1

= (ce + df) + (ca + db),

(ce + ca) + (df + db) = ce + df + ca + db.

V V > 0:

[ dc [:1 °

c
2
+ d

2
> 0.

V W = VtW WtV = W at V. ,

(rV) W (rV)tW = rVtW = r(V W).

V (W + U) = Vt(W + U) = VtW + VU I= V W + V = U.

8.

V V = VtV > 0

if VV=0=Vtv and V= I 01
.0.1

(V + W) (V + W) = IIV + WI 12 by Corollary 4-5-1;

(V + W) (V + W) = V V + 2V W W W = I1V112 + 2V W + I1W112

by Corollary 4-5-1 and Theorem 4-6c.

9. (a) V ,W = 6 + 6 = 0, T W = 24 24 = 0,

V T = 4 16 = 20 = + IIVII IITII = = 20.

(b) V W = 6 + 6 = 0, T o W = 42 + 42 = 0,

V e T = 28 + 63 °. 91 = + 1 1 VI 1 I ITI 1 + r6-ff = 91.

No, T and W are not orthogonal. .

(Page 1593
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1.0. Let

V 12
[ UV 1

Since V and T are parallel,

by Exercise 4-3-4. Let

Now

T = r
v] '

hence

V W = 0;

au 4. by = 0, W T = rua + rvb = r(au + by) = 0;

therefore W T = 0, and the vectors are orthogonal.

117. Since

[t

rts]
= rts + str = 0

s]
tr

12.

for all

Let

r, s, t, the vectors are orthogonal.

V = [[u] and W = a
bi '

where a, b, u, v e R. Since V and W are orthogonal,

If u # 0, then

V o W = au 4. by = 0,

au = bv.

157
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Let

Hence

()a = (v).

b 1`, U

t

On the other hand, if u = 0, then v 0 0 since V 0 0, so

whence again

with

13. (a) If

then V 6 W = O. Let

av
t

t =

I IV + WI I
2

I IV WI I
2

= 0,

V 1 W CC1

[page 160]
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so that

Now

V + W =
[a + c
b + d

[a ci
V W =

b d

(a + c)
2

+ (b + d)
2

(a c)
2

(b d)
2

= 0,

4ac + 4bd = 0,

ac + bd = 0.

Since V to W = ac + bd, we have V e W = O.

(b) If V W = 0, then IIV +WII
2

IIV WII
2
= O.

Since V o W 0, ac +bd = 0.

(a + c)
2

+ (b + d)
2

(a c)
2

(b d)
2

= 0.Hence

14. (a
2
+ b

2)
(c

2
+ d

2
) (dc + bd)

2

= a2c2 + a2d2 + b2c2 + b2d2 a2c2 b2d2 2acbd = a
2
d
2
+ b

2
c
2

2acbd

= (ad bc)2.

15. We show first that if (V + W) (V + W) V V + W W, then V W. = 0.

[a
Let V rig bl '

Since (V + W) 6.(V + W) =VeV+WoW, we have

(a + c)
2
+ (b + d)

2
= a2 + b2 + c2 + d2,

2ac + 2bd = 0,

ac + bd = 0; hence V W = O.

We show next that if VoW= 0, then (V + W) (V + W)=VV+Wo W.

Since V W = 0, we have ac + bd = 0, and 2ac + 2bd = O.

c)2 d)2 a2 b2 . c2
Therefore + + d

2
, and

159
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(V+W) (V+W)=VeV+We W.

16. Let V
[ [ 1

Now

+ [a [a] [al tcl
b+dj db d b a

hence

a
2

c
2
+ b2 d2 = a2 + b2 c2 d2.

Therefore,

(v + w) (v W) = V V W o.W.

[a c
17. Let V =

' '

then
b d

1 IVI 1 = + b2 ,

11411 I = N/c2 + d2 ,

I IV + WI I = V/ (a + c)
2

+ (b + d)
2

= Vfa 2 + 2ac + c
2
+ b

2
+ 2bd + d

2
.

Now, if we know that A > 0, B > 0 (as we do when A = I IV + WI I ,

B = I I VI I + I !WI 1), then A < B if and only if A2 < B2. Consequently,

we may compare the squares

and

, Doing so, we get

I IV + WI 12

(111111 + 111411)2.

160
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a
2
+ 2ac + c

2 +b 2
+ 2bd + d

2
< a

2
+ b

2
+ 2 N/Ia 2 +b2 V/c 2

+ d
2
+ c

2
+ d

2
.

This is equivalent to

or

2ac + 2bd < 2N/a 2 + b
2 2

+ d
2

,

ac + bd <
v/a2 b2 N/c2 d2

We would now like to repeat our device of "squaring both sides."

Unfortunately, we can no longer be sure whether ac + bd is positive,

negative, or zero. Hence we cannot get an equivalent inequality. But

actually it is only the "backward" implication that we care about.

Fortunately, we do know that for C >0,

D2 < C2

implies D < C. This is all we need; let °

C = N/a 2 + b
2 %/c 2 + d

2

and

D = ac + bd.

Then

D
2
< C

2

becames

a
2c2

+ 2acbd + b2d2 < a2c2 + a2d2 + b2c2 + b2

Is this true? Well, it is equivalent to

b2c2,2acbd:
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which, in turn, is equivalent to

or

0 < a
2
d
2

2acdb + b
2
c
2

,

0 < (ad bc)
2

.

This last inequality must be true.

Now, trace the implication backward; since

0 < (ad bc)
2

is true, the equivalent statement

a
2
c
2

+ 2acbd + b2d2 < a2c2 + a2d2 + b2c2 + b2d2

must be true. Consequently,

ac + bd < 'la 2 + b
2 V/c 2 + d

2

must also be true.

But this last statement is equivalent to the desired result.

(The logic involved in this chain of implications is probably more

confusing than the actual algebraic manipulations.)

4-6. An Area and a Determinant

The idea of a determinant is reintroduced in this section, though the

original identification of a determinant is given in Chapter 2. If Chapter 2

has been omitted, the impact of the present section is not diminished if the

determinant is simply defined as the value ad bc; that is,

b
5(D) = a bc, . where D =

[a
c d] '

[pages 1601-165]
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The idea contained in this section is particularly important because it inter

relates the geametrical and algebraic aspects of-a-vector and also interrelates

vectors and matrices.

Exercises 4-6

110 01
1. (a) = 5.

2

12 4. 81
(b)

2
5.

(c)
1-2 61

4.
2

2. (a) 5, (b) 0, (c) 2, (d) 2.5, (e) 2.

3. (a) 3969 < 4225, 17.89 < 18;

(b) 100 < 100, 3113 < 3-1-5";

(c) 100 < 100, iS <

4-7. Vector Spaces and Subspaces

In the last section of Chapter 2, we defined an algebra as a system having

both the properties of a ring and of a vector space. In this section, we

finally define a vector space precisely. The addition of this new concept is

not going to alter any intuitive notions about an algebra that the class may

possess. Rather it will provide for more abstract systems the criteria by which

we can judge whether or not the systems are algebraic.

Briefly, a vector space is a type of mathematical system. The elements of

the system are generally what we recognize as vectors in the present test, but

they do not need to be. The definition is broad enough to encompass 'systems in

which the elements might be linear and constant polynomials as one example,

polynomials of degree two or less for a second example. It is well worth

demonstrating this as a class exercise.

163
[pages 161-172)



1.55

Exercises 4-7

[ I

a
121

+ b
[

34

=
1 1 ] '

where a = - 5, b = 2.

43.1

[2(Notice that we cannot use orthogonality here, since ]
and

1

are not orthogonal. We may, instead, use the linear equations:

2a + 4b = - 2, a + 3b = 1.)

The basis

vectors
121

1

41
and

[

3

and

[, The vector

The representation of

[4]
3

[-fl
as a linear combination of [21

1
Y

143 I

21 [ 4

J 1 1.

[-21

3] 1

ii
[page

2
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1 5 6

(b) [21
1 31a

11 5where a , b 7

2 1

3

(c) [-031 6{121 (....3)[4_}
A
-

[page an]
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(d) W431

101
- (-2) [3. + 31

2H4

166

[page 1733
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[41 [2}
1.

141
2 1 3

(g) [11 0 [12} 2 {43]

[page 173]
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1.1 1. 4

2 1 2 3-1

(page 173]
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2. Notice that
[ 2]

-a
and

[2]4
are orthogonal. We may, if 'm wish, find

a and

(a)

b

[-2

1

by using

a
21

4

the inner

+ b
[2
[-1 1

product.

'

which we .can abbreviate

Now,

Z aV + bW.

VeZuVe(aV + bW)

u a (V V) + b(V W)

= 5a + Ob.

By computing, we find V Z = 5. Hence, we have

or

Similarly,

5a = 5

WZJEW(aV + bW)

a(W V) + b(W W)

u Oa + 20 b.

Now, W O. Consequently, we have

or

20 b 0

b = O.

[page 173]
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(Actually, it is possible to obtain a = 1, b = 0 by inspection

in this particular problem, but we shall not pursue this point.)

The representation of Z as a linear combination of V and W is,

consequently,

or, simply,

as (-1) [ 2 ] + 0
[2

[11 4] '

[-
1

21 2
= (-1) .

[ 1] 22
(b) = a

[ ]
+ b

[

4] '

4
a(V V) = V Z, 5a = 4, a = .

3
o(W W) = W Z, 20b = - 6, b = -

10 '

So

I P 3i 16 [..]

[23} .4 L21 [42]

(d)
11.-21] "k1' [24]

(e)
[ 0 1 1 2 1 2

1 j -a + 3 4]

[

(f) The method we have used in parts (a)-(e) is certainly working smoothly

enough the only computation each time is to determine the two inner

products V Z and W Z, since we already know that V o V = 5 and

W W = 20 (and, of course, V W = 0, without which this method would

not work so well).

[page 1733
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(In Exercise 1, (a)(i), we used a more straightforward but also more

tedious method, by solving simultaneous equations. Our present "inner

product" method is much more efficient, and can be done by inspection.)

Now that we have solved parts (d) and (e), we can introduce another

method. This third method is really quite obvious, and, like the second

method, it can be done by inspection. Ii will, however, require a few

lines of explanation:

[ol I

we want to express
[4]

]
[

1

2
as a linear combination of

0

, the coordinates a and b can be determined by inspection:

[4 = a b [011

2

,
L

0

whence, immediately, a = 4 and b = 2.

Now,

and

[1

1 [2]
()I 4. 10 4

If we substitute into equation (1), we get

[41 , [ 21 1 [2 1 [ 21 1 [2

2
43 +To. 41} + 2 {---5- +3 411 ,

and, combining terms, we have

[41 gm {4 (a) + 2 -01 + {4 + 2(15)1 [241
2 5/

and

(1)

These calculations can also be done by inspection, if we observe the

patterns that are involved. After a final simplification, we have

141 [21 4 [21
2 5 1 5 4

[page 173]
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As a check on our numerical work, we solve this problem again, by the

"inner product" method:

[1:1

[ 21 [2
a + b

--1 41 ,

a(V V) V Z,

5a 0 6,

6

b(W W) W e Z,

, 20 b 0 16,

4
b 3 .

(g) Using the third method (i.e., using the results of parts (d) and (e)),

we have

-8 1 [ 21 _s_ ( 21

5 5 1 10 5 4

= 2 [ 211 2 [2
4]

(h) By inspection, a = 0, b = 0.

rol
(i) [-431 3 + 4 1

{2 [ 21 1 [2]} L211 31. [421}
5 1 10 4

( [-211+ 1-51) [ 421

[....211 4.1 [24]

{3. To prove that S = r [2 3] r e Ris a subspace of H, we must show

that: [page 173)
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(i) SCH

(ii) [Property (a) of Definition 4-3.] If V and W are two elements

of S, then V + W is an element of S (i.e., the set S is closed under

the operation of vector addition).

(iii) [Property (b) of Definition 4-3.] If V is an element of S, and

x is any real number, then xV is an element of S (i.e., the set S is

closed under the operation of multiplication by a scalar).

Here are the proofs:

(i) By the definition of H,

r [; [23rri

is an element of H. This proves part (i).

(ii) If V and W belong to S, then

and

V = s {32

W = t [2
31 '

for some real numbers s and t (by the definition of S).

Now, by vector addition,

V + W = s [2] + c
3 3

[2s1 2t

3s [3t1

[2s + 2t

3s + 3t]

[2(s + t)

3(s +

= (s + t) [23] ,

(page 173)
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which belongs to S, since s + t is a real number (because the real

number system is closed under addition).

This completes the proof of part (ii).

(iii) Let V be an element of S.

Then (by the definition of S),

V = y 23]

[23s.;]

for some real number y.

If x is any real number, we must show that

is an element of S.

Now

xV

xV = x [231
3y

[ 237y1

2
= xy

which does belong to S since xy is a real number (because the real

number system is closed tinder multiplication). This completes the proof.

4. This proof is virtually identical with that for Exercise 3, except that

abstract notation must be used instead of explicit computation. We ihall

proceed as in Exercise 4:

rW belongs to H, since H is a vector space, and is therefore

closed under multiplication by a scalar.

(ii) If V, U belong to S (r;i 1 r e R), then V = sW and U = tW,

where s e R, t 6 R (by the definition of S).

U + V = tW + sW

= (t + s)W

(page 173)
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by Property IIc of Theorem 4-2, p. 134 and (t + s)W belongs to S since

the real number system is closed under addition, and hence t + s is a

real number (use the definition of S).

(iii) If V E S, then V = sW, where s c R (by the definition of S).

But, for tV, where t C R, we have

tV = t(sW)

= (ts)W

(by Property IIb of Theorem 4-2, p. 134 of tae text.)

Now, since the real number system is closed under multiplication, we

know that ts is a real number. Therefore tV is a real number times W.

Therefore, by the definition of S,

This completes the proof.

5. (a) Yes, it is a subspace.

(b) No, because rV, where r E R, will not necessarily be of this form.

(If we used the set of integers as our scalars, then in that case the answer

here would be "Yes.")

(c) No, since rV, where r E R, would not necessarily be of this form.

(If we used the system of rational numbers as our scalars, the answer would

be "Yes.")

(d) (2u1 v1) + (2u2 v2)

= 2(u1 + u2) (vi + v2).

Cons..quently, this is a subspace.

(e) No, tnis is not a subspace. If V and W belong to this set, then

the uum of the entries in V + W will be 4, instead of 2.

(f) No, since this set is not closed under addition. (For example,

[11 [01 [11
and satisfy uv = 0, but their sum does not.)

0 1 1

1 7 5

[page 173]
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6. To prove that U + W belongs to F, observe that U + W is a linear

combination of U and W. Similarly, sU is a linear combination of U

and W.

7. Suppose

Then we have

6

[311 a [1] + b

2a + 6 b = 3,

5a 15 b = 1.

Multiplying the first of these equations by -5/2 produces

15
5a 15 b = --

2 '

which contradicts the second equation of the systemyso there can be no

solution fcr a and b.

As a second solution to this problem, we can observe that

so that

L.
[-165'

-2

5] '

V
[-21 [ 61

m and U =
5 15

are collinear. Now, if Z = could be expressed as a linear combina

tion of V and U, we would have

Z = aV + bU

= aV + (-3b)V

= (a 3b)V,

so that Z would be collinear with V. However, is not collinear
[fl

[page 173]
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[1]with , and this contradiction implies that Z cannot be a linear

combination of U and V.

8. If

and

then

Z = aU + bV,

U=cV,

Z = acV + bV

= (ac + b)V,

so the result is the set of all vectors collinear with V.

9. Let V E F, i.e., V E F1 and also V E F2. We must show that rV E F.

Now rV e Fl, since F1 is a vector space. Similarly, rV,E F2. Conse

quently, rV belongs to both F1 and F2; by the definition of F, there

fore, rV belongs to F.

The proof that V+WEF is quite similar.

10. We can replace the statement:

If V and 14 are not collinear, then any vector Z

of H can be expressed as a linear combination

Z = aV + bW.

by the equivalent statement:

If there exists a vector Z that cannot be expressed

as a linear combination

Z = aV + bW,

then V and W are collinear.

We now prove this second statement. The vector equation

[pages 173-174]
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zi
us a 17 311 b wl

v2 w2 I

is equivalent to the system of equations

vl a + wl b = z

v2 a + w2 b = z
2'

where the "unknowns" are a and b.

Now we are supposing that this system of equations is impossible, i.e.,

there are no solutions a and b. But there are no solutions a and b

if and only if the determinant of the coefficients

v1
v
2

w
2

is zero.

Now, by Theorem 4-7 (p. 163) this determinant is zero if and only if

thp parallelogram determined by 1.:7111 and [:11 has zero area, i.e.,
I. 2

if and only if V and W are collinear.

This completes the proof.

To prove the converse, we need to observe merely that every implication

in the preceding proof is in fact an equivalence, so that the two conditions

are equivalent: Each implies the other.

11. Suppose the statement were false. Then there would exist a vector Z for

which there would be at least two different representations:

where

Z =a1 V+b1 ig= a
2
V + b

2
14

'

2

b
1

b
2

[page 174]
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By subtraction,

(al a2)V + (b1 b2)W = 0,

where either al a2 0 0, or bl b2 0 0, or both.

Suppose that al a2 0 0 (or else relabel). Then we can divide,

obtaining

b
1

b
2

V = W ,
a
1

a
2

so that V and W would be collinear.

This completes the proof.

12. Let

3 2 2v = x 21 + y 1.1 I + z -4 I
1 1 5

This is equivalent to the following system:

3x + 2y 2z = u,

2x y 4z = v,

x + y + 5z = w,

and this system has a unique solution; see Exercise 5(a) of Section 3-3

on page 118 of the text and page 87 of this Commentary. Namely, we have

For example, if for

1

17

6

17

1

17

12

17

13.

17

5

17

10

17

8

17

5

17

170
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we ge t

v

1

17
6
17
1

17

we take

12 10
17 17
13 8
17 17
5 7

17 17

3
4
0

3

4

0

3

2
1

so that

2
43 = 3 { 23 I 2 1f. + 4 j .
0 1 1 5

180
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Chapter 5

TRANSFORMATIONS OF THE PLANE

5-1. Functions and Geometric Transformations

A geometric point of view is a very valuable asset in mathematics, for

skill in geometric visualization can often lend insight and obviate much tedious

calculation. The process of acquiring a "geometric point of view" i,e., of

developing one's ability to create and use appropriate geometric models often

requires real effort, but the mathematical "payoff" is well worth it.

[ 00 1

[g 1

Exercises 5-1

(d)

(e)

[21
9 1

[12
2
[-2

(f)
2

(d) [1

151
(e) [ 0

101
o

3. (a) No change; this is the "identity" mapping.

(b) Collapses the plane to a single point, namely, the origin.

(c) Expands the plane uniformly by a factor a, if a > 1 (i.e., a

distortionless magnification).

If a = 1, this is again the identity mapping.

If 0 < a < 1, this is a uniform shrinking of the entire plane.

(d) This is the same as part (c), followed by a reflection 311J the origin.

(e) Projects every point in the plane perpendicularly onto the y axis.

181
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(f) Maps the plane onto the line y = x, by translating every point

parallel to the x axis.

(g) A reflection in the y axis.

(h) A reflection in the x axis.

(i) Every point is moved parallel to the x axis, so that its distance .

from the y axis is doubled. (You might visualize the points of the plane

as molecules in a gas. The motion corresponds to suddenly creating a

vacuum at the far left and far right, at "x = oo" and at "x = oo.")

(j) A uniform magnification by a factor of 3.

(k) A "shearing" motion, in which every point moves parallel to the x

axis. Points above the x axis move to the right, and points twice as

far from the x axis are moved twice as great a distance. Points below

the x axis move to the left, and points twice as far from the x axis

are translated through twice us great a distance. We illustrate with 8

points:

f

eir--* e' a I

*. b '

gf

d'

hi.

[pap 187]
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Another way to describe this is as follows:

The line x = 0 is transformed into the line y = x:

The line y = 0 remains invariant:

Not

x

[page 187]
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The square 0 < x < 1, 0 < y < 1,

is transformed into a parallelogram:

Y
A

(1,1) (2,1)

184
[page 187]
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The square 0 < x < 1, 1 < y < 0,

is mapped into the parallelogram:

x

(1) This is another "shearing" motion. Each point moves parallel

y axis. The square

[page 187]
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A

a x

0 < x < 1,

is mapped into the parallelogram

0 < y < 1,

(1,3)

0 < x < 1, 2x < y < 2x

[page 1871
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(m) Another shearing motion. Each point.moves parallel to the x axis.

(n) Still another shearing motion. Each point moves parallel to the y

axis.

4. These are onetoone: (a), (c), (d), (g), (h), (i), (j), (k), (1), (m), (n).

Transformation (b) carries the original 2dimensional space into a point

(which we call a 0dimensional space); transformations (e) and (f) map the

original space into a line (a 1dimensional space).

5. Let

(a)

(b)

V =

x + 1
y + 41

[ x
2

V

V

[pages 187, 188]
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(d) 11>

(e) v

1
110P'11 = HOPI!

------4- Horizontal projection

813

[page 188]

onto y = x.

y = x



6.

(f) V xl
2x

181

Since we know that the

x coordinate is not changed,

we have

Now, we know the image P' (or Q') lies on the line y = 2x.

Hence, the second entry in the vector must be 2x, and we have

V -->
{2x I

zLine thru P with slope 2

[page 188]
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Let P have coordinates (pl, p2). Then the line through P with

slope 2 is

y p2 = 2(x p1).

This line intersects the line y = x at the point (x,y) found by solving

the system

P2 2(x P1),

y = x.

An equivalent system,

can be solved to get

x p2 = 2(x p1),

Y x3

x = 2p1 p2,

y = 2p1 p2,

so the coordinates of P' are

2p1 p2

2P1 P2

i.e., the vector transformation can be written

1

or, in the x, y notation,

2p1

--> 2p1 p2

x { 2x y
2x yi

[page 188]
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7. (a) This is merely matrix multiplication:

1 2 x [ x + 2y
[4 3] [ y] 4x + 3y]

I

(b) 1 2 1

4
1

;

8.

(c)

(a)

(b)

This is

[14 23] [1]

[11; 23]

the subspace

2

.
kl

of vectors collinear with

[141]

21[ 9]

[ 7]

(c)

[1 1 [-11
4 3 1] I. 1 ]

(d)

i 14 23] 1 [2.] [ 5]10

9. (a) First method:

1 2 4 81
[ 4 31 I 21 22

Second method (using linearity):

and multiplication by

[1
4

2

21 [2
3 1]

yields

4]
11

(b) First method:

[
4

4] [ 8

11 221

[14 23] 541 13; I

[pages 188. 1893
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Second method (using linearity):

[1 2431

(c) First method:

2[11 [1 2431[331 [2911

[ 291 1

4 13

[11 [,321

4
23][ ;1 [1; I

Second method (using linearity):

[4 31 [ 1 [1111 ' [4 31 [11

(d) First method:

[i 1178 I

[1 231 [41 141

1.5 31.1

Second method (using linearity):

2 [4 1 [ 4 i 2 ] [ 0 [ 10

4 3 0]16] ' [4 3 51 151 '

[ 4 I [ 10 1 [ 14

16 15 31]

(e) First method:

I 1

4

Second method (using linearity):

192
[page 189]
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3

[ 2 1

3.1

[ 8

17]



[1 2]

4

(f) First method:

21

[1
4

[2
8]

21 [5
3

'

31

1

4

Second method (using linearity):

2 0

3 31

8

17]

[1 21 [ 01

[-2[14 23] [13.1
'' 4 31 1

[12331

10. (a) 1 11 [ 51

[
1 1 1

11

[ 1 1-11
-2] L-31

Now, dividing by 12-, we get

[1].
291

( 6 4
(5, 1) -->

(-1, 3) --> (72=" 3ff)

The distance from (5, 1) to (1, 2) is

The distance from
( 6

vf
42 32 =

4 )
P if

[page 189]
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1 vf 2 2 ,./rili
7 + . 5.

2

Actually, the transformation is a clockwise rotation of the plane

through an angle of 45°:

[page 189]
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(b) 1 1 11 -2 [ 80
-/ 1 10 121 '

1 11 [ 61 [ , 1

-1 1 -5 -111

Dividing by & we find

12

3.
*maga*

187

P P' ,

Q Q'

Q':

[page 189]
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(c) [ 1 1]

-4 1

[ 11 1

-1 1

b

[al

[c]

[ a + b
-e +

c + d

'

Dividing by i2, we get

a
a + b

--->
+ b

c + d

->

Now, the distance fram (a, b) to (c, d) is

and the distance fram

N/4(a - c)
2
+ (b - d)

2
,

+ b -a + b) (c + d -c + d)
to

11
(a + b - c - d)2 + (b - a + c - d)2

2

is

2

(a - c)
2

+ (b d)
2

.

Since the distance between any two points is preserved, the trans-

formation must be a rigid motion. As a matter of fact, it is actually

a rotation clockwise through an angle of 450, as we remarked earlier, but

(Page 189)
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it may not be easy just yet to see why this is true. Your brightest

students may well be able to prove this fact even at this stage of the game.

. 5-2. ,Matrix Transformations

For this section, the student text is largely selfexplanatory. . Such

additional remarks as we wish to present are intermingled with the solutions to

the problems, since the problems themselves give meaning to the remarks.

Exercises 5-2

1. (a) (i) [1 2 [1 5

4 3 2

(ii) Y = 2x.

(b) (i) 1 2 I [ 7
4 3 2] 18] '

(c) (i) [1 2 1[0 [4
4 3 2] 6 I

6 3
(ii) y =

(d) (i) [1 2 I [ I [ 3

4 3 1 =

17

(e) (i) [1. 21 [3
4 3 0 1 =

(ii) y = 4x.

[pages 189-1933
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(f) (i) [1 21
4 3

(ii) y = 6x.

{-6 2

4] 121 '

2. This problem uses the linearity property

T(aV + bW) = aTV + bTW,

and the fact that V and W, if not collinear, form a basis H. Hence,

any vector Z can be written as a linear combination

Z = sV + tW.

If, now, we know TV and,. TW, we can compute TZ as

TZ = T(sV + tW)

= sTV + tTW.

(a) Evidently, we want to use [21] and
[]

(which are not collinear!)

as a basis. The first problem, then, is to find a and b to give us a

representation of (31 as a linear combination of kl and kl , i.e.,
3 1

1
[31 = a [21 +1:{2}
3 1

In this case, a = b = 1.

Consequently,

[3
er

] [21 T[1]
23 1

(b) 121

[

.= a
2

+ b 12 ,

[1

198
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{4 I [2a b

2 13]a + 2 '

2a + b = 4,

a = 2,

2

[41

a + 2b = 2,

b = 0,

+ 0111
_ [21

2 I

[10
21

[ I

(c) First, we represent ...1 as a linear combination of the basis

vectors

of

and
1

121

21 and
[

12

[

1
2

Thus,

that

193.

. (The idea, of course, is that we know the fate

under the transformation T..)

[--11
= a

2
+ b

11 [2 '

1

2a + b = 1, a + 2b = - 1,

[--11

, b = - 1.

{21 [1

+ (-4)
1 2]

Now, because of the linearity of the transformation T, we know

199
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(d) [ -2 1 [ 2
a +b

2 2 11 '

a = 2, b = 2,

[-2
= 2T 11 2T [2i

2 2 1

= 2 [5 + 2 [ 4 1
1 5

(e) [11 b 1 2 1

f
451

10
2 1. 810[

1 1a= -5 , b ,

[i I 2 1 1 [ 11
1 1 1-5 T 2

1

23:1 4513

[1 21 b 21 I

3

a= 1, b 2,

T 1 4 1 T
L 1

21 + 2T [1]
L 5 2

+ 2 {45} k-1 + [180

(page 193]
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Alternative method (using the answer to part (a)):

(g)

9 4 13
T [41 = T [31 + T [11

5 3 2 6 5 11

[231 [211 [121

1 4
a -5 , b = 3

'

2 1

3 3

1

-3- 1

[51

21

1,

-3-

[41
+

35.1

16
3

20

3

Alternative solution (using th answer to part (e)):

T
121 4 [31 [ 71=T[11 +T[1 1 = [51 + =
3 2 1 2 7

11
3. (a)

L-2
evidently maps Fi onto itself. To find the fate' of F

2'1

we can proceed as follows:

Any vector of F
2

is of the form

or, equivalently,

Now,

[ttl2 '

t 12 1 where t E R.

ol[

:1 111

[21 [

'

[pages 1939 194]
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so that the image of F2 is merely the point (0, 0). Mathematicians

sometimes express this by saying that F2 has been annihilated by the

transformation

Next question: What is the fate of F3? Any vector in F3 can be

written

or, equivalently,

Now,

and hence

t[-2tl '

where t R.

[22 1] [14;d ,

T
[

2t1
1

= (4t) [...41 .

.

Consequently, the image of F3 is the onedimensional vector space

r [11 r e .

Geometrically,

202



into

Finally, what is the image of H under the transformation

Any vector of H can be written

x E R, y e R, and, consequently

[-2 11[ 2x + y 1
= (-2x + y)2 1 y 2x + y

2
2 1

195

Geametrically, the entire twodimensional space H is mapped onto

the onedimensional space

r c R,

as shown at the top of page 196 of this Commentary.
(pages 193, 194]
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Remark: Any students seriously interested in this topic might find

[12 I and Iit worthwhile to use the vectors as basis ,bectors for

H. The result is very suggestive. Can you see a general method that

emerges from this train of thought?

(b) Clearly, the matrix B maps F
1

into itself,

What about F
2

Again, any vector of F
2

is of the form

Consequently,

t e R.

0 1 1 2
= 2

1

1-2 31 [21 [4 21 '

and F
2

is mapped into itself'. (We say that F is an invariant subspace

under the transformation induced by matrix B.)

For F
3'

we have vectors of the form

204
[pages 193, 194]



and we see that

t 2

Hence, the image of F
3

is

t e R,

411
= (-2) lilt.' .

1.1

1 '

r e R,
4

which forms a 1dimensional vector space, namely

1 1 --110 X

197

What does matrix B do to H itself? Since B(B) 71 0, B maps H

onto itself. (We leave it to you to decide how.)

(c) and (d): Using the matrix AB is equivalent to mapping the space

first with B alone, and then mapping the result with A alone.

205
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Actually, it is easiev to answer question (d) firs::

(d) [Done first for convenience; part (c) follows] :

Using the matrix BA is equivalent to mapping the space first using

A alone, and then taking this result and mapping it using B alone.

This is a consequence of the associative law for matrix multiplication:

(BA)V = B(AV).

The lefthand side, of course, corre,--nds to using the matrix BA.

The righthand side says that we take the vector V and transform it

by using matrix A. 'Eli., result of this will be AV. We now take this

result, and transform it using matrix B:

AV --> BM/.

The subspace F1, of course, is mapped onto itself.

How about F2? We know that A maps F2 onto (0, 0), i.e., onto

F
1.

(We have now found (AV).) What happens when we now apply B?

Answer: B maps (0, 0) (or F1) onto itself.

Consequently, BA maps F2 onto F1, i.e., into the single point

(0, 0).

How about F3? First, we know that A maps F3 onto the line y = x

(or, if you prefer, onto the 1dimensional vector space r , where
1

r e R). Now, what does B do to [
1
1 ?

0 1 1 1

(-2 31 [11 [11 '

1
so B leaves , and hence every vector in the space r ,

1
un

changed. Thus, BA maps F3 in precisely the same way that A alone did.

Finally, what happens to F4 (i.e., to H itself)? Let us follow

our earlier suggestion, and express every vector of H as a linear

combination of the basis vectors

I

1 1

1

and
11

[pages 193, 194]
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(We clearly can do this, since these two vectors are not collinear.) Now,

if V is any vetor in H, then

1 11

Applying the matrix A to V,

AV = A

we have

2 1
[1] + b [11)

. [211 bA [id

so that H maps onto the line y = x. This line, however, is unaffected

by the application of matrix B. Consequently, BA maps H in precisely

the same way that A alone did.

(c) [For convenience, the solution to

of part (c).1

Evidently, AB maps F1 into itself.

part (d) precedes this solution

What about F2? We know that B maps F2 into itself (each vector

being multiplied by 2). Then, A maps this result [as we saw in part

(a)]

(0,

into the single point

0).

(0, 0). Consequently, AB maps F2 into

How about F
3

? B m'aps F3 into the vector space

[1
41

r , r e R,

and then A maps r fl
[

as follows:

2 1 1 2 [11
-211 4 I2 1 = `

[pages 193, 1943
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Consequently, the image of F3 under the combined transformation

induced by AB is the onedimensional vector space

r
1

[ 1 ] r e R

(i.e., the line y = s).

Finally, how about H itself? We know that B maps H onto itself,

and A then maps H onto the line y = x. Consequently, the combined

transformation maps H cnto the line y = x.

4. (a)

(b) Here we are given the image vector Z, s :hat

AV = Z:

Zvidently, this situation calls for A-1:

So, -101, compute

1 1
A AV = A Z,

IV = A
-1

Z,

V = A
-1

Z.

A
1 1. --1

=
0 11

2 03

[page 194)
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Now we are ready for business:

[1 11
1.11

1

O 1 1] '

[1 [-11 2]
O 1 1 1 '

[ 1-1 1 [ 11 [ 2

O 1 1
[ 1 11 0 I [ 0

O I 0 0 '

[ 1 1 1 [ ri {r si

fl 1 a

S. (a) Not linear. We give a counterexample:

But every linear transformation takes

(b) N linc.a.r. We give a counterexample:

But does it?

Answer

[gl

[11 [11
1,

into itself:

fill [1
should go (by linearity) into 2

11 11

2 1 --> 12 .

So the ,..74.np-g.,rnation is not linear.

(c)

(d) 1.441.e ar. .

(e) Not linear.

(f) Not 11W-0,u!.. We give 4 counterexample:

(page 49 9
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1 3 1 [ 151
-->

4 20

2 [31 should, by linearity, transform into [3°
4 40]

But does it?

6 1 60

8 801

So the transformation is not linear.

6. If A maps the entire plane into (0, 0), then it must map

into (0, 0). Consequently, if we let

we know that

{ a b

c d '

a b 1 0

lc d1101 [ad [01

Hence a = 0 and c = 0.

To show that b and d must be 0, consider in a similar way the

vector
[0
11

7. If A maps every vector into itself, then it must map

onto itself.

k 1

Consequently, we know that

[page 194]
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so that a = 1, c = O.

To determine ,b and d, consider in a similar way the vector

8. The line y = 0 can be represented as the 1dimensional vector space

Now,

r [0 11 r e R.

[

2 1

0 1-1

1

01 [ 01

203

Hence the line y = 0 is mapped onto itself. Every vector is doubled;

hence,

is the only vector mapped onto itself.

9. (a) Follows from direct calculation.

(b) Let A be the matrix

[ a b

c d 1

We know that A must map onto the x axis:

so that c = O.

[a 1[11 [a] .11
c d 0 01

(pages 1911, 195)
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[01
Similarly, A maps onto the x axis:

1

1[ bd1 [ 01 [ bd 1
= [01 P

so that d = O.

Hence A must be of the form

[a b

0 01

Does this perform as desired? Yes it does, since

a bi [xi {ax byi

0 0 y 0

so A maps H onto:_the x axis.'

10. Proceed similarly (campare Exercise 9). The result is

il. (a) If AV = 2V for all V, then this must hold for each particular

instance, and so we look for some instant., s that will yield simple

computations.

One such "special case" is this: Let V be

Then we have

k I

a bi 1 2

[c 1.0 [cl [01

Consequently, a = 2, and c = O.

Similarly, by considering

01 I '
[page 195]
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we find that b = 0, d = 2.

205

(b) Proceed as in part (a). The result is

12. Note that we cannot Ime A
-1

this proof since it !stirely possibleii

that 5(A) = O.

Instead, we proceed as follows: Let

Then

Further,

This completes the proof.

13. Here is the proof:

First, if f is linear, then

f(rV + sU) = f(rV) + f(U)

= rf(V) + sf(U),

so the equation is a necessary condition for linearity.

Conversely, if f satisfies the equation

then,.in particular,

f(rV + sU) = rf(V) + sf(U),

f(A +B) 1.1 f (A) + 1(B)

[pages 195, 196)
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(by substituting r = s = 1, A = V, B 0 U); also,

f(tV) =

(by substituting s = J, etc.).

This completes the proof,

(In other words, this single equation is equivalent to the two con
,

ditions stated in Definition 5-2 on page 190.)

5-3. Linear Tnansformations

The content of Section 5-3 Is very important and useful. We note here

just one aspect of it, namely: It provides us with two valuable tools for

finding matrices from transformations and vice versa. In both cases, we are

able to replace an apparently "hard" problem by a much simpler one.

First, we can study AV for all V by studying the transforms,of Only

two vectors -- namely, Ex two noncollinear vectors. (This method is used to

study the rotation transformation on page 198.)

Second, we can aametimes simplify a problem by regarding a transformation

as the result of a sequence of simpler transformations. (This method is used

to construct the matrix on page 199, bottom.)

We have also used both of these methods in solving same of the problems

in the preceding sections.

Exercises 5-3

1. (a) 1

01I 1;1 [;]

(b)

{00 0 01 1 1

(c) [ Oa [ [ aayx1

214
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(d)

[-a 0 x [-exl
O -e

1
y -ay

(e)

(f)

(g)

[0
0

[0
0

-4[

0

011

111

0 }

1 yxl

{ yx1

[ yx1

.[ y01

;}

(h)

1.1 0 x
O -11 tyl -L> [2Y1

(i)

t

2 0 x
->

[2x-
0 1 y Y1

[

(j) 3 0 x
--> 1.3x

0 3 y 3y1

[

.(k) 1 1 x 1.x + y
---->

O 1
1

y y 1

(1)

(m)

(n)

2

1

[
0

[ 1

-3

0]
1

-2

1
1

0

1

1

[xl
y

x
y

x
y

x
2x + y].

[x - 2y]

L
Y

x
[ y - 3x

]

--->

->

-->

2. (a) p is represented by

(b) q is represented by

(c) We know that r carries

Consequently,

into

[page 200]
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a
bd I [1 I [ o11 '

or

so a 0, c

Similarly,

1.

r al
c

[ol
1 '

( 0 b [Oil

Or

[ bd I
[01

so b 1, d 0, and the matrix is:

o 11
o j

(d) Evidently, s takes

into

Hence,

and

k I

a
bd I 1.01 1 [ 1

216
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ILCI L 11

so that a = 1, c = 1.

Similarly, s takes

into itself, so that b = 0, d = 1, and the matrix must be

[1 0

(e) We know that pq corresponds to "first q, then p". Now, q maps

H by horizontaI projection into y = x, after which p reflects this

line in the x axis. The combined matrix can be found as follows:

matrix for q alone:
1

[0 11 '

Modifying this to include a subsequent reflection in the x axis, we get

the matrix

(We can, of course, also obtain this from the matrix product

10 211[00 111 *)

( f) [ 0-1 I. 1 0 1 0 1

0 1 0 1 0 1]

(g) r takes 111
0

into [ , after which p carries
[ 0 1

into
0 1

0
. The combined effect, then, is to carry

[1]
0

into

217
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[01

1.-11
Similarly, r takes into , after which p carries

1 0

into itself. The combined effect, therefore, is to carry
0

into
[fl

abl a
We know that [

c d 0
, so rightmultiplication by

I.

316 merely reproduces the first column : . Similarly, right

[ 0 I [12,

multiplying by mer,-;), reproduces the second column,
1 di

Hence, the matrix for pr must be:

[ 0 1
4 01

Alternative solution: The solution for part'(g) that we have just

given is one of these "clever" solutions that are somewhat involved to

explain, but can actually be done with extremely little computation.

The following solution is "more straightforward" (if you like it),- or

"more tedious and.less exciting" (if you prefer to disparage it):

[1

0

0

1
0-1
1 0

[ 0-1
1 01

(h) First, p carries kl into itself, after which r carries kl

into [fl . Hence the combined effect is to carry ki into, 11
0

[

Similarly, p carries into

[211 into kl . The combined effect,

0 0

then,

, after which

is to carry

r

[]

carries

into

Consequently ( cf. the solution to part (g) ), the matrix must be

Alternative solution: As in part (g), you can find the result by

multiplying the matrices for r and p:

[page 2001
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[o 11 [1 ol o 1

11 of to 1] [1 ol

(i) [0 11 {1 01 --1

01111 11]

(j) If you think carefully about the geometric effect of sq, you can

get this matrix by inspection:

[0 1
for q alone:

0 11

After q is applied, every point is on the line y = x. We now

shift each point vertically through a displacement equal to the x co
ordinate of the point, i.e., equal to the "opposite" (cf. S.M.S.C., First

Course in Algebra) of the y coordinate. This makes no change in the x

coordinate; but a number plus its "opposite" (i.e., additive inverse) is

zero, so the new y coordinate must be zero, and the matrix is

[0 1
0 01

(k) Let's do this the "dull, routine" way:

11 011 ([01 1] [1
01] ()I'll 1]

1-1 1. 1

L
0 1]

(1) By the associative law for matrix multiplication, this must be the

same as part (k).

(m) We know that the matrix for sq is

[0 1
0 01

If, now, we follow this by a reflection in the x axis, the x

coordinate is left unchanged, and the final matrix must be

[page 200]
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[0 -1
0 0]

(Another way to say it is: sq maps the entire 2-dimensional space

H 'onto the x axis. But following sq by p can have no further effect,

since the points on the x axis are left unchanged by a reflection in

that axis; consequently, the combined effect of sq followed by p must

be the same as the effect of sq alone.

Alternative solution: One can, of course, multiply the matrices for

p and for sq:

01 [0 -11 [0 -1
0 -1 0 0 0 0]

(n) By the associative law for matrix multiplication, this must be the

same as part (m).

(o) The geometric interpretation here can help us avoid considerable

computation.

. First we apply q: This maps H onto the line y = - x, by'the

matrix

[0 -1
0 11

We follow this by r, a counterclockwise rotation of 900, so that

the points at

E

move (under q) to,

and
011

and' [ -1
11 '

respectively, and then (under r) to

[ (C1)1

and
LI]

[page 2003
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We next apply p, so these points move on to

and
0° 1 11[ 4

Finally, we apply s, getting

[ -4
and

0° 0 I

Hence, the combination (sp) (rq) takes

into

Po- 1 [ 011

and

and
0 1 . 01 '

respectively. Using our rule about the reproduction of columns when we

right-multiply by N or [°11 , we can immediately write the matrix

for (sp) (rq) as

[0 -1
0 01

3. Matrix representing 150 counter-clockwise rotation: either fg or gf.

Note: In this case the matrices must commute, as we see at once from their

geometric meanings without the need to do any computation whatsoever:

4. (a) If T is a linear transformation, then

(b) Let S be a subspace of H, and let T be a linear transformation.

Let S' be the image of S under the transformation T. We must show

[page 200]
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S' is closed under vector addition and under multiplication by a

=7,21,-.

First, closure under vector addition: Let VI and W' belong to

. Then, by the definition of S', there exf-nt two vectorn V and W

_n -75., such that

TV = V ,

TW = W.

liow, since S is a subspace, we know that + W belongs to S.

4:her-ore, by the definition of 5', T(V + W) abn to V.

iowever,

T(V W) = TV + TW = V' + W ,

which shows that the sum V' + W' belongs to S', and so S' is closed

under vector addition.

The proof of closure under multiplication by a scalar is similar.'

5. We must prove that

(f + g)(aV + bW) = a(f + g)(V) + b(f + g)(W).

By the definition of (f + g),

(f + g)(aV + bW) = f(aV + bW) + g(aV + bW)

= af(V) + bf(W) + ag(V) + bg(W),

the second equality holding because of the linearity of f and g.

Continuing, we have

(f + g)(aV + bW) = af(V) + bf(W) + ag(V) + bg(W)

= af(V) + ag(V) + bf(W) + bg(W)

= a [f(V) + g(V)] + b [f(W) + g(W)]

= a(f + g)(V) + b(f + g)(W).

222
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The cAlaset:, Ern- tIlese last three steps are, respectively, the commutative

.andzmsorv Lwws for real mumbers, the distributive law for real

rninibe tfre de:- lition Of (f' + g).

6. The to that in Exercise 5, aboV,:-.

7. We pro -.,. represented by AB. This _mplies that fg i ..-.111ear.

Proo± yat I is represented by AB:

Let and 'le, respectively,

e h[ac bd1
and

[ k mi

By ou e -&,u-rhe reproduction of columns when we rightmultiply by

[11
or b (cf. solution to Exercise 2.in this set), we know that

0

are carried

[01 1

[oandl 1

[ e 1 h

and m '

respectively, -ny matrix B (i.e., by transformation g).

If we now apply transformation f (i.e., matrix A), the vectors

will be carri--ti iatc

and

te hl
k and

In

a bile' [ae +bk
c d k ce did '

[ a bi [ [ah +
ch dm '

(pages 200, 2013
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respectively.

Combining the two transformations, we see th.c:

are carried by fg into

ae + bk I
and

ce + dk
[ah + batri

ch +

011

respectively.

Using our rule about the reproduction of colummE, -,74nen we right

[

multiply by 1 or by ° , we can write amiat%±. that.will take
0 1

[11 and [(31 into
0 1

[se bk]
and

ce + dk

respectively.

This matrix must be

[ ah + bm

ch + dm I

C = [ae + bk] [ah + bm
ce + dk ch + an]

By multiplying AB, we find that

AB = C.

Now, the matrix C maps k and
1.°11

correctly. However, we

cannot infe-7 from this that C maps every vector correctly (i.e., the

same way that AB does), since we do not yet know that fg is linear.

To complete the.proof, observe that fg is linear if and only if

the matrix C (which we know must induce a linear transiztaation, since

every matrix does; cf. Theorem 5-5, p. 209) maps every vector the same way

that fg does, i.e., for all vectors V,

A(BV) = CV.

But this must be true, in consequence of the fact that ( = C, and

that matrix multiplication is associative:

224
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= (AB)V C7;'.

This completes the prc- for fg. The proof for gf i si=ilar, or

=ma be ob=ained from tilis by rziabsLing.

8. We T=st prove that, fo- all vectors v belonging to IL 7a7--have

f(g + h)V (fy.. fh)V. (1)

T'a establish the validity of equaticm (1), we use the definitionn of sum

and product of transformations as follows.

By definition,

(fg + fh)V = (fg)V-+ (fh)V
(2)

= f(gV) + f(hV).

Also, by definition,

f(g + h)V = [gV + hV] .

Because f is a linear transformation, we have

f + hV] = f(gV) + f(hV).

Comparison with equation (2) now establishes the validity of equation

(1). This completes the proof.

-(b) We must prove that, for all vectams V belonging to H,

l(f + g)h] V = (fb + gh)V.
1

From the definitnmn of the sum and product of transformations, we have

(Th:+ gh)V = (fh)r---,igh)V== f(hV) + g(bV)-= (f + g)(hV),=, [(f + g)] hV.

rotis completes the prnmi--.

laeach part of Exerri,tre: 8, the important thing is to remeMber that we

ammworking with lineartransformationsmot with matrices. .The formulae
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looic similar, but brvIp. 1ig71erent meanings. Thus, for example, if A, B,

and V are matrices:, Erin

A(BV) = (AB)V

im an instance of theznas;-ociative law for matrix multiplication.

On the other hanh f f and g are linear transformations, the

strzexment

f(gV) = (fg)V

in the definition of txm_ product of two linear transformations.

To prove part (c. :we must show that, for all vectors V of H,

f [(ag)V] = a(fg)V.

But this is easy:

a(fg)V = (af)(gV) = a [f(g11)] = f [a(0)] = f kag)y] .

)=4. Onetorne Linear Transformations

The text=makes lit use of the concept of dimension of a vector space.

Because this-ls a ral sophisticated (and deliberateLy openended) course,

we have not hmaitatee1 introduce this concept, even-though briefly.

In parti=dar, we nom ..it:to solve Exercises 6 End 7, though alternative

prxmls can be gl:men.

"Dimension" is:km:intuitively simple idea thatoften lends itself to easily

untmmalized groofs.

Herearnesome enral theorems and definitions:

Theorem I mmr.Dintemsion. Let K be a vector space; _let U1, U2,...,U
n

ind*opaldeatarof vectors with the property that every vector in

amnbaappressed_in

a .."

1
17.

:

a
2

a
n

Un ,
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for some set 1:f real numbrs a-a2,...,an; and let Vi,V2,...,Vm be another

linearly independent set of veasnas, again with the property that every vector

in K can be expressed as a linear combination

+ + b V ,
in Al

for real numbers b b
2'

.. b
m

, Then m = n.

Proof. 'ale can prove :ihie -ratner easily by supposing that m < n, ex-

presvingeachofthe.U.In tern-s of the V., and showing tnat this contradicts
1 1.

the IUmear independence of the T.. Therefore we have m > n, and similarly

n > m- Therefore, n = m.

(To make matters easy, if yonlpresent this proof in class, you might t:ry

the MEE n = 3, m = 2, which you can easily write out explicitly in complete

detail.)

Definition of Dimensitm. Tha number n TheOrem 1 above will be called

the dimension of K.

Theorem 2 on Dimension. Ler T be a linear transformation that mans tbe

vector space K into tha.vector space L. Then the :dimension of the range is

less than or equal ro t dimenslun of the domain.

p . The mroofie Arsaightforward, by assuming the contrary and using

'the properties of T ther

T(a T7 . T-T + ''" + an Un)
1 -1 -2 2

a2 T'U + -- an 177.3'n

and eT :0 T.

Exercises 5-4

1. (a) Is ame-to-one.

(b) Is nat one-to-one.

(c) Is one-to-cm. 2 2.7

:Emages 201-203)
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(d) Is one-to-one.

(e) Is not one-to-one.

(f) Is not one-to-one.

(g) Is one-to-one.

(h) Is one-to-one.

(i) Is one-to-one.

(j) Is one-to-orm.

(k) Is one-to--ccm_.

(1) Is one-to-om..

(n) Is one-to-ore_

(n) Is one-to-am-

2. Suppose T is not one-to-one. -Then there eldst two -rectors V and W,

nat equal, such 'that

T V 'T W-

Denote T-V by 6ze Lett Z.. We can I)

T V Z,

(1)

How, T(V -= Z = 3; bz= V - W mot 0 . Hence, if. T is
not one-to-one, the kernel does nor mulsist solely _cf. the zero vector.

These statemen,-..1....; are somewh= complicated, andt4is may be a good place

to write out our logic symbol2cal-1.y:

Let I be the statement:

T is =ft-to-one.

Then -I is the statement:

T is not me-to-one.

[-Page 2:01
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Let K be the statement:

The kernel consists only of the zero vector. Then is the state"

The kernel does not consist sole4 of the zero vector.

There are four possible forms, representing actually two statements:

first,

I K and its equivalent 1( 7.>, I;

second,

K I and its equivalent I K.

We have already established the second of these two statements (in

its equivalent form I

We must now prove the first statement.

Suppose that the kernel does not consist of the zero vector alone.

Then there exists a vector R such that

T R= 0,

but R itself is not the zero vector.

Then T cannot be one"toone because, for any vector V, we have

T(V+R)=TV+TR=TV+0 =TV,

and the distinct vectors V and V + R have identical images. This

establishes the implication

or its equivalent,

^,K 1,

I K.
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This completes the proof of the theorem.

(The use of symbolic logic is a matter of taste. ln our experience,

it does simplify expositi.on once students become accustamed to it.)

3. This proof follows easily by direct computation.

4. We must prove that

fg V = fg W

implies

V W.

Since f is onetoone, we know that

f(g V) = f(g W)

implies

g V = g W,

and the required result now follows from the fact that g is onetoone.

5. The result that the set of transformations is a group follows easily

from Exercise 4, plus the fact that matrix multiplication is associative.

6. Since no linear transformation can increase dimension (i.e., the dimension

Df the range is less than or equal to the dimension of the domain), if either

t f or g decreases dimension (i.e., is not onetoone), then fg must

decrease dimension (and hence fail to be onetoone).

7. If A is the matrix

it evidently maps onto a point.

If A is the matrix

230.
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then we know that

and

[a b

c d I '

[ a bd I 01 .

ía bd1 1 [ bd

223

Hence, if the two columns of A constitute linearly independent

vectors, then A maps onto H. In this case, we know that NA) 0 0.

Hence, if 5(A) = 0, the columns of A are dependent; i.e., A

is of the form

[a ka
c kcl

But A of this form implies that

[a kal[xl [a(x ky)]
c kc y c(x ky)

m[a
cl '

and therefore, unless a = c = 0, the range is a line.

(b) Follows by direct expansion of the matrix product.

(c) Since A is not the zero matrix, and 5(A) = 0, we know that the

range is a onedimensional vector space, i.e., a line. The kernel must

therefore itself be a onedimensional vector space. This proves the re

quired.result.

(d) This is an important result that clarifies the situation of two

simultaneous equations in two unknowns when the determinant of the co

efficient matrix is.zero. 231
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If U does-not belong to the range of A (which we know to be one-

dimensional), =hen evidently

can _have no solutions .

that

AV = U

lf, howevez, U does belong to the range of A, then we must show

AV = U

oady if V e (V1 + tV2 I t e R, AV1 U, AV2 = 0).

MInst, if V belongs to this set, then, by the linearity of A, it

must be =rue that

AV,= A(V1 + tV2) = AV1 + tAV2 = U +0 = U.

Snppose, on the other hand, that

AV = U.

Consider the vector V - V1. Then we have

A(V - V1) = AV - AV1 =U-U= 0,

and hence V- V
1

belongs to the kernel of A. Since, however, the kernel:-

cLE A ±s onedimensional, we have V - V1 = mV2 for some real number tiv:

and 1-1.74-s completes the proof.

8- If A exiats, then

iwrffq-res

AV = U

-
V = A

1
U ,
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Characteristic-Values and Characteristic Vectors

The notion of a fixed element for a transformation is extraordinarily use

ful in mathematics, yetit,is deceptively simple.

You might begin by asking if somewhere on each line in the coordinate plane

. there is a point that has the same value for its ordinate as it has for tts

abscissa. On the line given by

y a 2x + 3,

such a point is , -a). On the horizontal line

Y m 5,

there is (5,5); and (1,1) is on the vertical line

x a 1.

The first of the foregoing examples can be looked at as follows: In the

transformation

x 2x + 3,

the value x a 3 is carried ,t0 the same value 3. That is why -a is called

a fixed value for the transformation.

The class will soon discover that the problem of determining the fixed values

for the transformation

x ----> ax + b

is simply the problem'of solving the equation

x a ax + b,

[pages 205P.211]
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and will see that this is always possible if a 0 1. The situation for a = I

becomes clear from a consideration of such equations as

and

=

x = x + 5.

Perhaps they will want to look for fixed values in the transformation

x > ax2
+ bx + c.

Exercises 5-5

1. (a) 12 c 5 I

0 3 c

(2 c)(3 c) = 0,

c = 2,3.

For the characteristic value c = 2, we have

[ 00 15 I [ba 012 0 1

One characteristic vector is

and all others are of the form

For the characteristic root c = 3, we get

234
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[ -1 5 1 ta I

which is equivalent to

.-e 5b = 0,

One characteristic vector is

and all others are of the form

5

(b) 1-3 c 4 1

-1 2 - c

(-3 - c)(2.- c)

c
2

4. c - 2

(c +2)(c -

c 1, -2.

For the characteristic

u 0,

+ 4

u 0,

1) u 0,

root

0,

c 1, we have

which is equivalent to

4][ rox]
y 0 I1 '

4x 4y 0,

x y 0.

One characteristic vector is
235
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and all others are of the form

For the characteristic root c - 2, we find

which is equivalent to

i.... 44 [ 101

-x + 4y 0,

-x + 4y um O.

One characteristic vector is

and all others are of the form

4k

(c)

12 - c 11

-4 -c
g 0 ,

-2c + c
2

+ 1 22 0,

(C 1)2 =, 0,

C NB 1.

k e R, k 0 O.

k e R, k 0 O.

Here, the characteristic equation has a "double" root. What kind of

new behaVior will this entail?

We look for a characteristic vector:

[page 211]
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1 3. x 0

[-1 y 1 01

The vector

229

is a characteristic vector, and all other characteristic vectors are scalar

multiples of this one.

Can we not find any linearly independent characteristic vectors? The

answer in this case is "No," but if we look for vectors that, instead of

being carried into

by the matrix

are carried into zero by

Thus

we are able to find a set of basis vectors.

M2
1 1 11

= 1 1 1 1

which carries all vectors into zero.

A set of basis vectors can now be chosen in a very special way:

We construct a "chain of length 2" by selecting any convenient vector

that is carried into

by H
2

; for example, we might choose

[page 2I].)
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1
VI =

We now pick, for our second vector, the'image of VI under

1 11 [1 [
V
2

.M V =
1 [-1 1 0

If we use the vectors

M V
1,

V
1

as basis vectors, in that order, the matrix M will assume "triangular

form"!

[0 1

0 0 1

For a complete giscussion of this important phenomenon, see Sernard

Friedman, Principles and Techniques of Applied Mathematis, tWiltey 1956).

(d) c 2 1

= 0,
0 1 c

c
2

c = 0,

...........

c = 0, 1.

For c = 0, we have

0 2 x 0

[0 li[y] [01 '

........

The characteristic vectors are all scalar multiples of

For c 1, we get

[fl

238
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One characteristic vector is

{01 02

x

[ yx

+ 2y = O.

0

11

{ 2

and all others are scalar multiples of this one.

2. This follows almost immediately. Here is the proof:

If zero is iicharacteristic value, then

b
c d 0

a 131
= 0,

c d

since otherwise there could be no nonzero vector

such that
,

bi [ 0

[ c [y 0

Reversing this line of argument, we obtain the converse result.

3. First, f is onetoone if and only if its kernel (i.e., the set of vectors

mapped into the zero vector) consists only of the zero vector.

But the equation

IC 3[ y [ I

239
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4.

has a nontrivial solution if and only if the determinant 8(A) = 0, i.e.,

if and only if 0 is a characteristic root.

6 c 2
= 0,

2 3 c

c
2

9c + 14 = 0,

(c 7)(c 2) is 0,

c = 7, 2.

For c m 7, we get

[-1 2] 1x1 0[

2 0]

One Charactermstic vector is

V =

and the coriesponding fixed line is

For c = 2, we have

mv, m e R.

[ 42 [551 00]

with the characteristic vector

and the fixed line

Finally, the inner product

m C R.

[page 211]
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shows that V and

V W = (1) (2) + (-2) (1) = 0

W are perpendicular.

2
A =

all al2

x

all a12
al + a12a21 a

11
a
12

+ a
12

a
22

2
a21 a22 a21 a22

a
11

a
21

+ a
22

a
21

a
21

a
12

+ a
22

2

A (all a22)A 5(A)I

2

all -.- a12!21 a11a12 + a12a22 aL + a22a11
a11a12 + a12a22

' 2

a11a21 + a22a21 a21a12 -r a22

....

a
11
a
21

+ a
22

a
21

a
11

a
22

+ a
22

0
a11a 22

a
1
2a

21
I

tit

11
a
22

a
12

a
21

0

[0 0

0 01 '

as desired.

6. The first part follows by direct calculation. This does not contradict

Theorem 5-11, since the transformation in question is not linear.

7. If A maps every line through the origin into itself, then

xi
=r

[ db yx

for some r e R, and for all x,y e R.

This is equivalent to

ax + by = rx,

.... cx.+.dy.= ry,_ for all x,y e R.

Hence a r, b = 0, c = 0, d = r, as desired. The converse is trivial.

8. The characteristic equation for this matrix is

[pages 211, 212]
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9.

10.

11.

a
11

c a
12

a
21 a22 c

= 0,

c

2
(a22 + all)c + alla22

al2a21 O.

This quadratic equation for the "unknown" c wi:1 lave 2, 1, or 0

real roots according as its discriminant

2 2
-a22 all' 4.°11a22 al:±21)

is positive, zero, or negative.

However, this can be expanded as

r c

o t c

2 2
a
22

+ 2a
22

a
11

+ a
11

4a
11

a
22

+ 4a
12

a
21

= (a20 all)
2
+ 4a12a2a

2
+ 4a12a21 = d.

= 0,

(r c)(t c) s2 = 0,

2 2
c (r + t)c + rt s = 0.

The discriminant of this quadratic equation is

242
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12. The equation

can be written

b
2
- 4ac (r + t)

2
- 4rt +

42

r
2

+ 2rt + t
2
- 4rt + 402

(r - t)
2
+ 4s

2
> 0 if s # 0.

la-c bl
mg 0

d e - c

(a - c)(e c) bd 0.

For the transposed matrix, the characteristic equation is

la-c dl
=2 0,

b e - c

which is precisely the same equation.

5-6: Rotations and Reflections

This concluding section of the chapter ties together and reviews aspects

of the present course and of the students' earlier work in Euclidean geometry,

analytic geometry, and trigonometry.

Exercises 5-6

1. We know that the required matrix must be of the general form

[cos a 7tin
sin a cos a

" " ,,,,,,,,, . - ,,,,,,,,,,

The anly question that may lurk in your mind is whether a should be

the angle given in each part of exercise 1, or whether a should be the

(pages 212-217]
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negative of this angle. We can settle this by considering the case where

we rotate H through +90°. Such a rotation carries

into

k I

If we try a = + 900, we have the matrix

and we find that

0 1 1

[0 1][1] [0
1 0 0 11 '

and this is, indeed, the correct choice.

(Had we tried a 90°, we would have obtained

as the image of

I sfl

a fact you can easily check for yourself.)

We have thus cleared up any doubt as to which direction of rotation

corresponds to which sign for the angle a.

Here are the matrices M:

(a) a 180°, cos 180° = 1, sin 180° vs 0, so

244
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[ 0
M =

0 11

(It is directly evident that this matrix induces a rotation through

1800, since any vector is mapped into its own additive inverse,

v v.)

(b) a 450 , 'cos 450 = sin 45
0

= -7=
1,

, so
12

M =

(We can clock the tmage of

We have

k 1

which is evidently correct. How many other,vectors should we check to be

sure we have a correct matrix? What would be a convenient choice?)

(c)

(d)

a = 30°,

a = 60°,

cos 300 =

cos 60° .

M

, sin

sin

300 =

1 /5
7 2

60° =

,

,

so

so

245
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3s T1

7 1-

We note that a rotation of 30°, followed 1,5, a rotation of 60°, should

be equivalent to a single rotation through an angle of 900. We now check

this:

1

2 2 2

is l
"i

[0 -1
1 0] '

which does, indeed, check.

(e) a . 270°. We can obtain this by rotating through 180°, and then

rotating through 90
o

. Recalling that the matrix on the right corresponds

to the first tiansformation, we can write

[01 1.1 _011 [ 0 1
M=
-1 0] '

so this last matrix must correspond to a rotation through 2700 .

(Although we have been careful with the left-right order of our

matrices, this is unimportant in the present problem. It is evident from

the geometrical interpretation that rotation matrices commute. Can you

prove this algebraically?)

(f) a . 90°. We.have already obtained this matrix, namely,

[0
M

-1]
=

1 0

( ) From the geometric interpretation, it is clear that the matrix

[page 217]
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E [cos (-a) -sin (-CO]
2 sin(-00 cos (-0)

is the matrix inverse of the matrix

cos a -sin a
(a)

sin a cos a '

Evidently R2(0) rotates H through an angle of -01.

Using the fact that cos 8 is an even function, whereas sin 0

is an odd function, we get

cos a sin a
R2 (a) =

-sin a cos a

Consequently, if we find the matrix for + 1200, we can get the matrix

for -120° merely

But 120°

This i the matrix

we get the matrix

by reversing

900 300,

0 -11

1 0

for a

for a

the

so we

J5 1

T
1 J5
7 7-

= 120°.

= - 1200,

signs

have

"Oppositing"

namely,

of the two

T
15T

the

off-diagonal terms.

off-diagonal terms,

(h) This, evidently, is the identity transformation, represented by the

matrix

M
1. 0

=
[
0 1]

[page 217]
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(i) We use
135o 900 450

and then opposite the off-diagonal terms

(cf. answer to part g):

1 0

sn

Oppositing the off-diagonal terms, we get:

=

(j) 150° = 90° 4. 60°; hence,we have

M =

4
,r3"

1

-1 0
2. (a) [1 211 21] [ 0 1]

The second ';.atrix factor above merely reproduces the left-hand column

of the first factor, and opposites the right-hand column of the first,factor:

[a bill 01 [a -b
c d 0 -1 c -di

We can now write down the remaining matrices by inspection, using the

answers to Exercise 1.

(b)

248
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(c) 13- 1

2 2

1 _15
2 2

(d) 1

.2.- 2

15 1

2 -2-

(e)

[0 1
1 0

(f) [0 1

11 01

(g)

(h) J. 0 }

0 1

(i)

11
1 1

Ii

(j) T 7
1 151
'2' 2

21a

3. This follows directly by carrying out the matrix multiplication.

4. Let us see, first of all, what we can learn about orthogoual matrices.

Let M be the matrix

Ea b

c di '

249
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We have

b]
c d y

[x] [ax + by
cx + dy]

If the lengths of the vector and its image are equal, we have

x2 + y2 = a2x2 + 2abxy + b2y2 + c2x2 + 2cdxy + d
2
y
2

.

For this to hold for all x and all y, we must have

a
2
+ c

2
= 1,

b
2

+ d
2

= 1,

ab = cd.

Conditions (1) are necessary and sufficienr.

(1)

Let us see what happens if we apply this same approach to the trans

poseC matrix,

are:

t _ [a c=
b d] '

A necessary and sufficient set of conditions for

a
2

+ b
2

= 1,

c
2

+ d
2

= 1,

ac = bd.

to be orthogonal

(2)

The $64,000 question, then, is whether conditions (1) are equivalent

to conditions (2).

A very clever way to answer this question is to make use of our know

ledge of vectors, trigonometry, and geometry.

We can recast the conditions (1) in a new form by using the vectors

[page 2173
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Coftditions (1) become

IVI = 1,

IWI = 1,

V W = 0.

(1' )

Hence V and W are orthogonal unit vectors, and they must look some

what as follows:

(W1 and vr, are the possible locations of W, if V is given.)
'2

In order to get from

[aci

and

to the new vectors (appropriate for conditions (2))

I. and { dc I

we want to interchange the second component of V with the first component

[page 217]
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of W. The riagram, however, makes it clear that these components are

equal'in magritude, but may perhaps differ in sign. This difference in

sign, howev7, may not interfere in our three equations.

Now tha1 t we know approximately where we stand, let us begin with con

ditions (1) land deduce the equivalence of conditions (2) by a purely
1

algebraic calculations. (Special cases occur if some entries are zero;

consideratian of these will be left to the reader.)-

But

so we have

and hence

However, we have

and so

a
2

-I- c
2
= 1,

2
a 1
-c-) + 1 = 7 .

ab = cd,

c b '

a2
d
2

2 22-2'
c b

(d \ 2 1

la)

b
2

-I- d
2

= 1,

d
2

1 ()1o- = .

[page 2173
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Combining (3) and ,(4) gives us

whence

b
2
= c

2
,

b =-Fc.

This is the result that we saw geometrically in our heuristic

discussion.

a2 d2Since we have and also c
2

= b
2

, we can_conclude that
c
2

b
2 P

that a . d.

Hence, if V is

[ a

c

then W is one of the following:

[1] or [4] .

(We also saw this result geometrically in our heuristic argument.)

What happens, then, if we consider the pair of vectors

These must be

or else

[al
lb

c
and

[

[1:1 and 14.1

[ al
and i

c

a]

(page 217)
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Hence we have seen that, if

1:1
bd

and

are orthogonal unit vectors, then so are

1:1 id
and

d I

The argument is basically symmetric, however, and we can show similar

ly that, if

and
cl

I.bal

are orthogonal unit vectors, then so are

ectl [ b I
and

Hence the conditions are equivalent.

But

1 [ bl
and

are orthogonal unit vectors if and only if conditions (1) are satisfied,

and

c

b
and

j

are orthgonal unit vectors if and only if conditions (2) are satisfied.

Hence conditions (1) and conditions (2) are equivalent; that is to say,

the matrix M is orthogonal if and only if its transpose M
t

is also.

5. In this solution, we shall make use of our discu3sion (and notation) in

the preceding solution.

We know Lhat M is orthogonal if and only if its transpose Mt is

[page 217]
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also. Suppose that M is orthogonal.

We compute the produnt M Mt:

bl cl a
2

+ b
2

ac + bd

cd bd ac + bd c
2
+ d

2

but, using conditions (1'), we get

a
2

+ b
2

= 1, ac + bd = 0, c
2
+ d

2
= 1,

and we have

Similarly,

M M = I.

M M = I.

Thus, the transpose M
t

is the inverse:

Consequently, the result of Exercise 5 follows from the result of

Exercise 4.

6. This can be computed easily by observing that any orthogonal matrix (thanks

to conditions (1) of Exercise 4) can be written in the form

Or else in the form

(cos a -sin a
sin a cos 0:)'

(cos a sin

sin.a -cos a

7. (a) This might equally well be given as the definition of "translating H

in the direction of the vector U and through a distance equal to the

length of U."

255
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(b) First, the vector

is mapped into the vector

which is not of the same length. Then the statement that "the mapping

preserves the length of every vector " must be false.

Now, for the other half of this problem: The point (a,b) is mapped

into the point (a +2, b + 3), and the point (c,d) is mapped into the

point (c + 2, d + 3).

The distances between the original two points, and between the image

points, are respectively

and

V/(a c)
2
+ (b d)

2

,I[(a + 2) (c-1- 2)] 2 + [(b + 3) (d + 3)] 2 .

It is evident that these are equal.

(c) Every linear mapping must carry

k I

into itself. This mapping fails to do so, and consequently cannot be

linear.

8. This computation follows the same pattern as that in Exercise 6, except

that matrices of the form

(cos a sin ',X)

sin a cos a

[page 218)
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cannot occur.

9. It implies that, if the complex numbers Zl and Z2 are represented as

z
1
= cos a + i sin a,

z
2
= cos p + i sin p,

(note that both Z
1

and Z
2

lie on the unit circle in the complex plane),

then

W E Z1 X Z2

is representable as

W = cos (a + p) + i sin (a + p).

The correspondence between

and

is an isomorphism.

(cos a

sin D p)cos a

cos a + i sin a

.0. (a) A reflection across the line of the vector

cos a

sin a

can be constructed by rotating H through an angle a, whereupon the

vector

[cos al

sin a

[page 218]
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will come to coincide with the vector

reflecting across the X axis; and then rotating the space through an

angle of +a.

The product of the matrices to do this is

cos a

[
sin a

sin a

.cos aI

1

0

0

I
cos a sin Cx

sin a cos a

[

sin alcos a sin a

I

cos a

sin a cos a sin a cos a

nos
21
a sin

2
a 2 cos a sin a

=

I.

a cos2
Cx

2
2 cos a sin sin a

cos 2a

sin 2a

Isin 2a

cos 2a

This, then, must be the required matrix.

We can perform an unofficial (but reassuring) check by considering two

special cases. If a = 0, we have a reflection across the x axis, and

the matrix becomes

1 0

0 1 '

which is, in fact, correct.

nSuppose a =
2

Then we should have a reflection across the y axis,

and the matrix should become

I 0
0 11

2 58



Upon substituting a =
80.

251,

cos ic = 1, sin ic = 0, we find that it does

(b) This follows immediately if we substitute w = al2 into Equation (8).
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Appendix

RESEARCH EXERCISES

The material in this Appendix is probably too difficult for all but a few

extraordinarily talented students. As may be seen fram the exercises, all of

which are worked out, the bulk of. .1...zre nAnipulation is great. Hence only those

students who possess both creative imagination and considerable capacity for

pencil pushing are likely to profit from these exercises. Another difficulty

with all of this material is that there is no peg on which to hang it that

is to say, the student probably has no background in the arts or sciences to

which this mathematics could be applied.

The usual reaction of the mathematical novice to the "hat trick"

technique of solution, which is repeatedly used here, is one of puzzled

bewilderment. This phrase refers, of course, to the prestidigitetor who

pulls a rabbit fram an apparently empty hat to the astonishment of a naive

audience. Now professional mathematicians do not think it bad practice to use

the hat trick; in fact, both they and their audiences enjoy this when it is

properly performed. It is simply good pedagogy, however, to inform your

audience that you are going to do a hat trick. Moreover, the good teacher will

have no difficulty in properly preparing his students and arranging for a climax

in appreciation and interest at the appropriate time in the discussion. You

will perhaps recall Colley Cibber's advice to young actors first tell your

audience what you are going to do, then tell them what you are doing while you

are doing it, and finally tell them when you have done it.

Research in any field is best presented as a journey into the unknown. As

such, it is fraught with danger, difficulty, and all sorts of pleasant and

unpleasant surprises. But also it is quite comparable to the activity undertaken

by the creative writer, the artist, and the composer. It may be well to point

out this relationship, which is not always obvious to young people.

Let us look at Bection 1, dealing with quaternions. It may already have

occurred to the imaginative student that there is no real reason for reqUiring

the entries of a matrix to be real numbers. For quaternions, the entries are

allowed to be complex numbers. If the students do not notice that restricting

these entries to be real numbers will reduce the quaternion to a complex

number (Text, pg.94), then this ought to be pointed out to them. It might be
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well at this time to point out that matrices with complex entries are matrices

with entries that are themselves matrices, and that if one liked to do this?

one could also consider matrices of matrices of matrices, and so on ad

infinitum or ad nauseam.

Just why one should single out matrices of this peculiar quaternion form

as an object of intensive study, however, is by no means immediately apparent.

If you like, their invention was a stroke of genius on the part of the mathe

matician W. R. Hamilton. And so indeed was Mozart's Eine kleine Nachtmusik

and Shelley's Ode to a Skylark.

The material in this section involves straightforward, but lengthy, com

putation. On pp. 222, 223 of the Text is a mere hint, but the best that could

be offered of the way in which the algebra of quaternions is associatec:, with

geometry.

The introduction to Section 2 is cursory. It may be mentioned that "Lie"

is pronounced "Lee," though perhaps the students may recognize this fact since

Lie was the name of the first secretary of the United Nations.

In Section 3, some aspects of the general theory of subsets of 2 x 2

matrices are developed. Some particular subsets were studied in Chapter 2.

Perhaps the present material will encourage students to investigate further

the basic mathematics of sets and their subsets.

The last section is much closer to presentday mathematics than the three

preceding sections. It.has more, perhaps, in the way of elegance and actuality.

The iatroductory paragraph is essentially a factual description of what mathe

maticians do. 'It should be stated that the good mathematician delights in

constructing an ingenious or original technique for proving a theorem, whether

it is a new or a long established result. Every interesting theorem has in its

proof one or more elements of novelty. In fact, it has been remarked that ,the

only interesting things in mathematics are new proofa of old theorems and old

proofs of new theorems. Like all aphorisms, this one should be taken cum gran()

Belie. But mathematics is very close to music in this respect, at least to

classical music. One listens for the familiar and enjoys it when one hears it.

Dissonances are invented for the purpose of resolving them. Problems may be

invented simply for the pleasure of solving them.

Anyway, mathematicians have more fun than anybody.

1. Qearternions

(a) qm ;;I , zoix+ iy, www+ iv;

baps 219, 220]
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B(q) z + Zrig 12 (X iy)(x iy) + (u - iv)(u + iv)

-2 2 2 2 2 2
2.ex -iy +u -iv

as x2 + y2 + u
2
+ v2.

Since x, y, u, and v are real numbers, x2, y2, u
2,

and v2 are non-

negative real numbers.

numbers x2, y2,

Thus, x, y, u,

Therefore, q tx 0.
and this implies
2

v are all zero,

(b) If q

if B(q) 4 0. Thus,

5(q) 0, and so

q-1

(c) xI + yU

Thus, if 5(q)

u
2,

and v2 is 0, and

and v must each be

Conversely, if q

iithat x, y, , and

so B(q) te 0.

0 then B(q) 0 by

q has an inverse.

by (a), q IA 0. The

z wi -1 1

n 0

so

zero,

0,

v are

(a).

Conversely,

form

-vi

Y

then the sum of

each of these

so z, w, -z,

then z, w, -z,

all zero. Thus,

Now q has

if

of q-1 is

1

the

numbers

and -w

and

x2

an inverse

q has

-w

0 1

a o

nonnegative

must

are

-w all22

if

an inverse,

v

be zero.

all zero.

are

and

0s. O

zero,

and

only

then

+ uV + vW x

[7

1 0
0 1

0
0 -1 u

311

x
[0

0
xi

[ iy 0 1

0 -iy]
0

[..-u
ul
0

[0
iv 0

[x + iy + 0 + 0 0 + 0 + u + iv
0 + 0 - u + iv x - iy + 0 + 0

[ x + iy
-u + iv

a

[ ;
q.

u2 [i 0] [i 0] i2 0 I
0 -1 0-1

i
2 0 -1

- x,
0

u2 [ 1110 11 [-1 01
I,1 0 1 0 0 1

w2 1 ii I 0i1
2

021 [-01 -011 . I;

0

[01 oil 011 . [0i 0i]
UV w,
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V
U

V
W =

"
.
"
W
V

1
0

[ 0
1

101
110[[ 0 [ i0 i 01--i

=
i

1
0 1

[ 0i

[ 0-1[

0-
1 = 1

[
il [0 ii

= 1.40 i 0

U
0

0i1 i 010 U
;

W
U

{
0

[ i [
0 [ 0 11I° i 0 .
.
.
I
.

.
"
4

0 1i
2

0

U
W

1
[ i

0 i 0

0
] [0

i
i 1
[
0 i 0 1

1
.
2 0
j
= 0

(
e
)

L
e
t

q
r

F
r
o
m

(
c
)
,

w
e

h
a
v
e

T
h
e
r
e
f
o
r
e
,

L
e
t
t
i
n
g

w
e

h
a
v
e

q

z w '

m n

z x + i
y
,

w 01

+ i
v ;

m = a + i
b
,

n c + i
d
.

x
l

+ y
U

+ u
V

+ v
W =

r = a
l

+ b
U + c
V + d
W

[
x

+ i
y u + i
v

(
u i
v
)

x i
y

[
a

+ i
b c + i
d

(
c

i
d
)

a i
b

q + r I + a
l

+ y
U

+ b
U + u
V

+ c
V

+ v
W

+ d
W

(
x + a
)
I

+ (
y + b
)
U

+ (
u + c
)
V

+ (
v + d
)
W

{
(
x

+ a
) + i
(
y

+ b
)

(
u + c
) + i
(
v

+
d
)
1[
(
u

+ c
)

i
(
v

+ d
)
]

(
x + a
)

i
(
y

+ b
)

a =

(
x + a
) + i
(
y

+ b
) z + m
,

t (
u + c
) + i
(
v

+ d
) w + n
,

8 tq + r

[
[page

221]
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which is in the form of a quaternion, since s e C and t e C.

Similarly,

(x a) + i(y b), (1.1 c) + i(v d)

L(u i(17 (1).1 (x a) i(y b)]

Letting s' (x a) + i(y 11) z m and t' (u c) + i(v d) w n,

s' e C, t' e C, we have

s' t'
q r T' 11'1'

which is in the form of a quarternion.

Using the same notation, we have

qr (xT + yU + uV + vW)(aI +bU + cV + dW)

1.1 xaI
2 + xbIU xcIV + xdIW

+ yaUI ybU
2 + ycUV ydUW

+ uaVI + ubVU + ucV
2
+ udVW

+ vaWl + vbWU + VcWV + vdW2

where

xaI + xbU + xcV + xdW + yaU + ybU
2 + ycUV + ydUW

+ uaV + ubVU + ucV2 + udVW + vaW + vbWU + vcWV + vdW2

xaI + xbU + xcV + xdW + yaU + yb(I) + ycW + yd(V)

+ uaV + ub(W) + uc(I) + udU + vaW + vbV + vc(U) + vd(I)

(xa yb uc vd)I + (xb + ya + ud vc)U

+ (xc yd + ua + vb)V + (xd + yc ub + va)W

P Di
[ A B

A .8 (xa yb uc vd) + i(xb + ya + ud vc),

B (xt; yd + ua + vb) + i(xd + yc ub + va) ,

P {(xc yd + ua + vb) i(xd + yc ub + va)]

D (xa yb uc vd) i(xb + ya + ud vc) .

[page 221]
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we have

A zm wn, B us zn + 14E, A e C,.13 e C,

P us D X,

qr [ 1141 ,

which is in the form of a quarternion.

(0 Li ("FL-7-).21 )2
lql

q-q.
stq)

1.8(cOi

Since

by definition

and therefore

b(q) +

which by

Now,

where

A

definition is

-1 1

1 1 [7 w]

x iy
iv

u iv
x + iy

q
-1

.

1.21

Z

z

1

+

A B[

p D]

X2 + y2 + U2 + V2

x2 + y2 + u2 v2 x2 + y2 + u
2
+ v2

[pages 221, 222]
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B +( 2 2 2 2x +y +u +v x2 + y2 + u2 + v2
)

u v
P al i

x
2
+ y

2
+ u

2
+ v

2
x
2
+ y

2
+ u

2
+ v

2

D = +
2
x + y

2
4-u

2
+ v

2
x2 + y2 + u2 + v2

'

Letting

and

2
X2 + y2 -- U -- V2 x2 + y2 u

2
+ v2

x2 + y2 + u
2.

+ v2
4. i

x2 + y2 + u
2
+ v2

we have s C, t e c, so

is in the form of a quarternion. Since A W and B - t, we get

-1 A B
q

[

w]

-4
.which is perhaps a clearer way of expressing q

(g) q
2 0- t(q)q + 12 I [ z

in quarternion form.

2

- (2x) [

259

05(0..]1/2)2 El 01
o lj

z2 zw + -2xz -2xw
+ (x

2
+ y

2
+ v

2
)

01

1,7)z - + "T" '2x17 -2x1" 0 1

[A B] 1.-2x2 - 2xiy -2xu - 2xtv

P D 2xu-- 2xiv -2x4 + 2xiy

x2 + y2 + u2 + v2 0

x2 + y2 + w
2 2
+ v

I

[pages 221, 222]
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where

A = x
2

+ 2xiy y
2

u
2 +uiv ivu v

2

B = xu + xiv + iyu yv + ux uiy + ivx + vy

P = ux uiy + ivx + vy xu + xiv + iyu vy

D = u
2

uiv + ivu v
2

+ x
2

2xiy y
2

Hence we obtain

where

q
2

t(q)q +_Iq121 = [A' Bli
D'

A'= x
2
+ 2xiy y

2
u
2

v
2

2x
2

2xiy + x2 + y2 + u2 + v2 = 0

B'= 2xu + 2xiv 2xu 2xiv + 0 = 0

PI= 2xu + 2xiv + 2xu 2xiv +0 = 0

D'= u
2

v2 + x2 2xiy -- y2 2x
2
+ 2xiy + x2 + y2 + u

2 2
+ v = 0

and therefore

q22 0 0]
t(q)q + lql I = [

0 0
= 0

(h) = (aI + bU + cV + dW)(aI bU cV dW)

= a
2
I
2

abIU acIV adIW + baUI b
2
1J2 bcUV bdUW

+ caVI cbVU c2v2 cdVW + clan dbWU dcWV
d2w2.

Using (d), then, we get

= a
2
I abU acV adW + baU b

2
(-1) bcW bd(V)

+ caV cb(W) c
2(I) cdU + daW dbV dc(U)

= a2I + b2I + c2I + d2I = (a
2 +b 2

+ c
2
+ d

2
)I

= b(q)1

= lq12 I.
([8(0] 1/2\) 2

I

[page 222]
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(i) Let q = xI + yU + uV + vW and r = aI + bU + cV + dW. Since

q e Q and r e Q it follows by (e) that qr e Q. Referring back to part (e),

we see that

qr (xa yb uc vd)I + (xb + ya + ud vc)U

+ (xc yd + ua + vb)V + (xd + yc ub + va)W.

Using (a), we obtain

Thus,

Also,

2 2 2 2
8(q) = x2

2 2 2
+ y + u + vand 8(r) a +b c +d.

8(qr) (xa yb uc vd)2 + (xb + ya + ud vc)2

+ (xc yd + ua + vb)2 + (xd + yc ub + va)2.

lql =
[5(0] 1/2 { x2 y2 u2 v211/2

Irl = +[5(r)] 1/2 [_2 .

. o2
2 .2] 1/2a+c + a

. Therefore,

Now,

and

lql Irl = [x2 + y2 + +
vZ] 1/2 [a 2

+ b
2
+ c + d

2] 1/2

[ (x 2 + y2 + u
2

+ v
2
)(a

2
+ b

2
+ c

2
+ d

2)] 1/2

= {x2(a2 + b
2

+ c
2

+ d
2)

+ y
2
(a

2
+ b

2
+ c

2
+ d

2)

+ u2(a 2 +.132 + c
2
+ d

2)
+ v2(a 2 + b2 + c

2
+ d

2) 1/2.

[8(qr)] 1/2
lqr1 = [ (xa yb uc vd)2 + (xb + ya + Ud vc)2

+.(xc yd + ua + vb)
2
+ (xd + yc ub + va)

2] 1/2

[x2a2 2xyab 2xuac 2xvad + y2b2 + 2yubc + 2yvbd + u2c2

+ 2uvcd + v2d2 + x2b2 + 2xYab + 2xubd 2xvbc + y
2
a
2

(pages 222, 2233
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TQ

+ 2yuad 2yvac + u2 d
2

2uvcd + v2 c
2
+ x2c

2.
2xycd

+ 2xuac + 2xvbc + y
2
d
2

2yuad 2yvbd + u
2
a
2
+ 2uvab + v

2
b
2

+ x
2
d
2
+ 2xycd 2xubd + 2xvad + y

2
c
2

2yubc + 2yvac + u
2
b
2

2uvab + v2a2] 1/2

[x2a2 x2b2 x2c2 x2d2 y2b2 y2a2 y2d2 y2c2 u2c2

u2d2 u2a2 u2b2 v2d2 v2c2 v2b2 v2a2 1/2

[x2(a2 b2 c2 d2) y2(a2 b2 c2 d2)

+ u
2
(a

2
+ b

2
+ c

2
+ d

2)
+ 1/2(2

b2 c2 d2)] 1/2

Since q E Q and r e Q it follows from (e) that q + r E Q. Now

q + r (x + a)I + (y + b)U + + c)V + (v + d)W ,

S(q + r) = (x + a)
2

+ (y + b)
2
+ (u + c)

2
+ (v + d)

2.

The inequality

is equivalent to

or to

or to

lq + rl < lql + Irl

[(x + a)2 + (y + b)2 + (w + c)2 02] 1/2

r _2 y2 v2 v21 1/2+ [ a2 b2 c2 d2] 1/2,
=

x2 + 2ax + a
2
+ y2 + 2by + b

2
+ u

2
+ 2cu + c

2
+ v2 + 2dv + d

2

2 2 2 2 [ 2 . 2 2 2 I 1/2 [ 2 , 2 . 2 . d2 1/2<x+y+u+v+2,x+y+u+v a + D
a2 b2 c2 d2,

ax + by + cu + dv < [x2 + y2 + u2 + v21 1/2 [
a
2
+ b

2
+ c

2 + d2.1 1/2

(pages 222, 223)
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This is valid if the lefthand member is negative. Otherwise, it is equivalent

to

a2x2 + b2y2 + c2u2 + d2v2 + 2abxy + 2acxu + 2adxv + 2bcyu + 2bdyv + 2cduv

2 2 2 2 22 22. 2 2 2 2 2 2 2 2 2 2<ax +by +cu +ay +ay +au +av +bx +bu
2 2 2 2 2 2 2 2 2 2 2 2 2 2+bv +cx +cy +cv +dx +dy +du,

or to

0 < (ay bx)
2 +(au cx)

2
+ (sv dx)

2
+ (bu cy)

2
+ (bv dy)

2

+ (cv du)
2

,

which is valid since the righthand side is a sum of squares of real numbers.

You should compare this result with the "triangle inequality" (2) on

page 163 of the text, and should note that the present proof merely generalizes

the proof on pages 163 and 164 of the text.

2. Nonassociative Algebras

(a) (i) A o B = AB BA,

B 0 A = (BA AB) = BA + AB = AB BA = A o B.

(ii) A o A = AA AA = O.

(iii) A o (B o C) + B o (C o A) 4-C o (A 0 B)

= A o (BC CB) + B o (CA AC) + C o (AB BA)

= A(BC CB) (BC CB)A + B(CA AC) (CA AC)B

+ C(AB BA) -- (AB BA)C

= ABC ACB BCA + CBA 4- BCA BAC CAB ACB + CAB

CBA ABC + BAC

= 0.

(iv) A o I = AI IA = A A = 0,

I o A = IA AI = A A = O.

(b) Let

A

[1 21 [1 0] 0 1

3 0 ' " 3 1 ' 1 2 '

[pages 222, 223)
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Then

2 I 01 {011)A o (B o C) =
3 0

o 1
3 1

o
1 2 i

and

=

=

.

(A o B) o C =

=
([1

([7

[1
3

[1
3

[1
3

[-12
-12

13

3

[_36

[ 3

2 1 10 01
0 o ({

3 1 1 2

2] 0 11 [3o
70 ([1 5

II{--63 o31

[-3 01-
-6 3

121
12 2

Hence, A o (B o C) 0 (A o B) o C since

-

1
2

[1
3

0110
1

2-1

0

2

[1

rs

3

3 ,

21
0

[ -15-

1

9

o

61
0

[-3
-6

01
3

[-3
3

- 6
-'-12

121

1 2
[3

0 1

[1OD ° 2

6 01211

6 -3 -6
[

[ 6 01. 0 6 -3 -
-3 -6 12 -6 -15 0 -12

[ -12 121
-12 12

(c) A o (B + C) = A(B + C) - (B C)A

= AB + AC - BA - CA

= AB - BA + AC - CA

= (A o B) + (A o C)

B) o C (A + B)C C(A + B)

= AC + BC - CA - CB

[page 223]
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= AC CA -I- BC CB

= (A o C) (B o C).

(d) Let x be a number. Then

x
2
(A o B) = x

2
(AB BA) = x

2
AB x

2
BA

= xAxB xBxA

= xA o xB.

(e) Suppose there were an o unit. Call it I'. Then, for any A, we

would have

A o I' = A = I' o A,

by definition of unit. If A = 0, then

I' o 0 = 1'0

and

Oor = I'0 =0-0= O.

Certainly I' O. Suppose A 0 0.

We know that

by definition. Therefore,

so

and

A o I' = I' o A,

AI' I'A = I'A AI',

2AI' = 2I'A

272
[pages 223, 224]



which implies that

and thus that

But

2(Ar I'A) = 0,

AI' I'A = 0,

A o I' = A.

Together these imply that A = 0, which by hypothesis is untrue. Therefore,

there is no o unit.

AjB
2

AA + AA 2AA
= A2.(i) AjA =

2 2

(ii) AjI =
AI+IA A+A

2 2
IjA,

so I is a j unit.

A(B + C) + (B + C)A AB + AC + BA + CA(iii) Aj(B + C) =
2 2

AB + BA AC + CA
2 2

= AjB + AjC.

(A + B)C + C(A + B) AC + BC + CA + CB
(iv) (A + B)jC =

2 2

AC + CA BC + CB
2 2

= AjC + BjC.

(v) For any number x,

(page 224)
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2 ( AB + BA2
x (AO) =x)2

x
2AB

+ x
2
BA xAxB + xBxA

2 = 2

= xA j xB.

(vi) Aj(BC) (AB)JC + Bj(CA) (BC)JA + Cj(AB) (CA)jB

= [ABC + BCA ABC CAB + BCA + CAB BCA ABC + CAB

+ ABC CAB BCA]

1
={- 01 = O.

2

3. The Algebra of Subsets

(a) (i) (0) + (0) mi (0), so (0) is an additive subset.

(ii) (I) + (I) = Po' 1 4- [16 ' 4 (I), so (I)

is not an additive subset.

(iii) M + M(2 M, since the sum of any two 2 x 2 matrices is,

always, a 2 x 2 matrix, so M is an additive subset.

(iv) Z + Z C Z, since the sum of any two camplex numbers is a

complex number and Z is the set of 2 x 2 matrices which is

isomorphic with the set of complex numbers, so Z is an

additive subset.

(v) 143, .

To see this, consider

and

[2 1
A =

1 11
, 8(A) = 2 1 = 1,

B = 11 12] , 8(B) = 2 1 = 1.

Thus A MI, B MI. Now 274
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A + B e M1 +

and

11 + [1 121 231

A + B =

5(A + B) = (3)(3) (2)(2) = 9 4 = 5 0 1.

Accordingly, by counterexample, M1 is not an additive subset.

(vi) Let P be the set of all elements of M with nonnegative
entries. Then

P + PC P since the sum of nonnegative numbers is a nonnegative_

number. Thus P is an additive subset._

(b) (i) A+B= (A +B IAEA and 13E13) = (B +AIBCB and
A E A) = B + A, since ordinary matrix addition is commutative.

(ii) A + (B + C) = (A 4.'(B + C) : A E A, B e B, and C e C)

= ((A B) +C:AeA,BeB, and 6 e C),

since ordinary matrix addition is associative.

(iii) A+C=(A+C:AEA and CeC)

C (B +C:BEB and C C) since A C B

= B + C.

(c) (A + B) + (A+ B) = ((A + B) + (A + B) : A+BEA+B and

A +BEA+ B)

= (A + (B + A) +B:AEA,BE B)

= (A + (A + B) +B:AEA,BE B)

= ((A + A) + (B + B) : A e A, B B)

C(A +B:AEA,BeB) =A+ B,

since A and B arts both additive subsets.

(d) Let

275
(pages 225, 226)
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U A : A e M and Av = °01},

where v is fixed. Then

U-I-U=(A-1-B:AEU and BEU)

= {A B : A M, B e M, Av = [°01 , Bv [

= {A B : (A -I- B) E M, (A -I- B)v Av Bv =

C U,

so U is an additive subset of M.

Let Av = 0. Then (-A)v = (-1)Av = (-1)0 = 0.

(e) (i) (0)(0) = (0), so (0) is a multiplicative subset.

(ii) (I)(I) = (I), so (I) is a multiplicative subset.

(iii) M.MC M, since the product of any two 2 x 2 matrices

is always a 2 x 2 matrix; so M is a multiplicative subset.

(iv) ZZC Z, since the product of any two complex numbers is a

complex number and Z is the set of 2 X 2 matrices that is

isomorphic with the set of complex numbers; so Z is a

multiplicative subset.

(v) 141141(2
Let A E M

1,
B e M

1
so S(A) = S(B) = 1. Then

S(AB) = S(A)S(B) = 1 e 1 = 1, so M1 is a MultiPlicative

subset.

(vi) PP C P, since the product and the sum of nonnegative numbers

are nonnegative numbers; so P is a multiplicative subset.

(i) A(BC) = (A(BC) : A E A, B e B, and C E C)

= ((AB)C : A e A, B E B, and C E C)

= (AB)C,

since ordinary matrix multiplication is associative.

(ii) AC = (AC :AEA and Ce C)

(:(BC :BeB and CEC) (since AC B)

= BC. 276
[page 226]
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(g) Let A = {A : A = {0
O

l

i '
where a e R and a 0 0}

0 a

Let B = {13 : B = [1 11 '
where b e R}.

b 1

Then AB = (AB : A e A, B e B); BA = (BA I B e B, A e A

AB =
0 a b 1

=
[0 bal

[0 0
=

t1 [1 11 t fl
; BA

0 a .

r

Thus AB = BA means [ a a I 0 ba

00 0 a
and this means a = 0 and a = ba.

But a 0 0 by hypothesis, so AB 0 BA.

Therefore AB 0 BA.

(h) (i) Let A = (0, I). Then

AA = (00, OI, IO, II) = (0, 0, 0, I) = (0, II = A,

so A is a multiplicative subset._

(ii) Let B = (I, Then

BB = (II, = (I, I, I, I) = (I, I) = B,

so B is a multiplicative subset.

Let

(iii) Let N be the set of all elements of M with negative entries.

Then NN(t N, since the product of two negative numbers is a

positive number; so N is not a multiplicative subset.

(iv) Let E be the set of all elements of M for which the upper

lefthand entry is less than 1.

1 0[.2 0]
= and let D =

1 2 0 11
C

'

so that C e E, D e E. Then

21 02 [-01 01 I [ 2 0CD= 1 2 4.'"'""

since 2 4: 1.

Therefore E is not a multiplicative subset.

[pages 226, 227]
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However, consider the subset F of E for which the upper lefthand entry

is between 0 and 1, inclusive, and the lower lefthand'entry is 0. Then
Fa b1

E (F
' F

where a, b, c e R and 0 < a < 1). Consider
ci

[ a b ]
and

x y
A = B =

0 c 0 zi '

where A e F, B e F. Then

where

[a bl [ x y I ax ay + bz] d elAB =
0 c 0 z 0 cz f '

d, e, f e R and 0 < d = ax < 1,

so that AB e F. Thus, F is a multiplicative subset.

(v) Let

G = :GeM and G= Y
0 11 '

where 0 < x, 0 < y and x + y < 11 .

Consider

Ij I 1 and j = 104 1 1

where H e G, J e G. Thus, 0 < x, 0 < y, x + y < 1, 0 < w, 0 < z, and

w + z < 1.

Since

Also,

Now,

HJ =

0 < x and 0

0 < x, 0 < z

[x yi0101
< w,

implies

[w

we have

0 < xz

[xw xz + yl
0 1 .1

0 < xw.

and 0 < y implies 0 < xz +y.

Then xw + xz +y= x(w + z) +y< x(1) +y=x+y< 1. Therefore,

a b
HJ =

[
0 '

where 0 < a, 0 < b, and a + b < 1, so HJ(2 G. Thus G is a multiplicative

subset. [pages 226, 22?;
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Additional Results:

Let tA = (tAl tER and t is fixed, AEAEM). Then tA is

obviously an additive subset if A is additive

tB + tC = t(B + C) = tD E tA for B, C, and D E A

(B and C are taken in A; and, since A is additive, B+C=DEA).

Since tBtC = t
2
BC 0 tBC unless t

2
= t, tA is not multiplicative unless

t
2
= t and A is multiplicative.

Define (-1)A = ((-1)A : A E A).

.Define A = (A : A E A). [A is a welldefined matrix.]

Then (-1)A = A, since A = (-1)A.

Define An = (An : A E A). In general, An is neither additive nor multiplicative,

A(B + C) = (A(B + C) : A E A, B E B, C E C)

= (AB + AC : A E A, B E B, C C)

= AB + AC, since matrix multiplication distributes.

Consider A(B U C). u= set union, ri= set intersection.

M B Li C ---> M B or M E C (or M (B n C)).

M E A(B U C) H M E AB or M E AC (or M E Aos (lc»

m E AB U AC.

Therefore, A(B U C) = AB u AC.

M E n m E AB and M E AC

M E AB nAC.

Therefore, A(B. n C) AB nAC .

4. Analysis and Synthesis of Proofs

(a) (i) x A y = the smaller of x: and Clearly, these two

y A x = the smaller of y and x are the same.

bages 226-.228)
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(ii) x V y = the larger of x and y Clearly, these two are

Y V x = the larger of y and x 1 the same.

(iii) xA (y Az) = the smaller of x and the smaller of y and z,

(x A y) A z = the smaller of the smaller of x and y and z;

clearly, each of these is the smallest of the three numbers x, y,

and z; so the two expressions are the same.

(iv) x V (y V z) = (x V y) V z. Each of these expressions calls for the

largest of the three numbers x, y, and z, so they are the same.

(v) x A x = x. The smaller of x and x is certainly x.

(vi) x V x = x. Similarly, the larger of x and x must be x.

(vii) x A (y V z) = the smaller of x and the larger of y and z,

(x A y) V (x A z) = the larger of .the smaller of x and 'y and

the smaller of x and z.

If further proof is desired:

Case

"

"

"

II

I

II

III

IV

V

VI

x<y<z
x < z < y

y < x < z

y < z < x

z<x<y
z < y < x

xA(yVz)=xAz=x
II =xAy=x
II =xAz=x
11 = x A z = z

II = x A y = x

it = x A y = y

(xAy)V(xAz)=xVx=x
11

ti =yVx=ix
11 =yVz=z
II =xV z=x
ti = y V z = y

(viii) x V (y A z) = the larger of x and the smaller of y and z,

(x V y) A (x V z) = the smaller of the larger of x and y and

the larger of x and z.

Also:

Case

"

"
1 /

II

"

I

II

III

IV

V

VI

x<y<z
x < z < y

y < x < z

y < z < x

z<x<y
z < y < x

xV(yAz)=xVY=Y
ii =xVz=z
11 =xVy=x
11 = x V y = x

II = x \/ z = x

11 = x \/ z = x

(xVY)A(xV
i,

II

11

II

11

)-=yAz=y
=yAz=z
=xAz=x
= x A x ,.. x

=YAx=x
=xAx=x

[page 229]
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(b) A(BC)
y e fi)

[EC dbi ([z [g h

[a bi [Xe + yg xf + yhl
c d ze + wg zf + wh

axe + ayg + bze + bwg axf + ayh + bzf + bwh
cxe + cyg + dze + dwg cxf + cyh + dzf + dwh

axe + bze + ayg + bwg axf + bzf + ayh + bwh
cxe + dze + cyg + dwg cxf + dzf + cyh dwh

[ ax + bz ay + twi {e f 1
cx + dz cy + dw g h

[ a b xy
c [z w I) [ fgh

= (AB)C.

bd A

"
xyAcIf

A A (B A c) [ac z w [g )
la bi A [ (x A e) V (y A g) (x A f) V (y A h)1

c d (z A e) V (w A g) (z A f) V (w A h)

[(a A ((x A e) V (5' A g))) V (b A ((z A e) V (w A g)))
( c A ((x A e) V (5' A g))) V (d A ((z A e) V (w A g)))

(a A ((x A f) V (y A h))) V (b A az A f) V (w A OD]
(c A ((x A f) V (5, A b))) V (d A az A f) V (w A h)))

[((a A (x A 0) V (a A (y A g))) V ((b A (z A e)) V (h A (w A g)))
((c A (x A e)) V (c A (y A g))) V ((d A (z A e)) V (d A (w A g)))

((a A (x A f)) V (a A (y A h))) V ((b A (z Al)) V (b A (w A h)))1
((c A (x A f)) V (c A (y A h))) V ad A (z A f)) V (d A (w A h)))

,[((a A x) A e) V ((a A y) A g) V ab A z) A el V ((3 A w) A g)
((c A x) A e) V ((c A y) A g) V ad A z) A el V ad A w) A g)

((a A x) A f) V ((a A y) A h) V ab A z) A fl V ab A h)
((c A x) A f) V ((c A y) A h) V ad A z) A f) V ((,1 A h)

[pages 228, 229]
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(
(
a

A x)
A e)
V (
(
b

A z)

A e
)

V (
(
a

A y)
A g)
V (
(
h

A w
)

A g
)

((e

A x)
A e
)

V ((d

A z)

A e
)

V ((e

A y)
A g
)

V ((d

A w
)

A g
)

(
(
a

A x)

A f) V (
(
b

A z)

A f) V (
(
a

A y)

A h
)

V (
(
h

A w
)

A h
)
1((c

A x)

A f) V ((d

A z)

A f) V ((e

A y)

A h
)

V ((d

A w
)

A h
)

[(((a.

A x)V

(
b

A z))

A e
)

V (
(
(
a

A y)
V (
b

A w
))

A g)

(((c

A x)
V (d A z))

A e
)

V (((c

A y)
V (d A w

))

A g
)

(
(
(
a

A x)
V (
b

A z))

A f)
V (
(
(
a

A y)
V (
h

A w
))

A h
)

(((c

A x)
V A z))

A f) V (((c

A y)
V (d A w

))

A h
)

(
a

A x)
V (
b

A z)

(e A x)

V (d A z)

(
a

A y)
V (
b

A 101

[
e
fl(e A y)

V (d A w
) g h

b
d A

[2:
w

yl)

A
[e

g h

= (A A B
)

A c.
[
a

b x y a +
x

b +
y(c)

A + B = c d z w c+
z

d+
w

a b x
y

a
V
x

b
V
y

D
e
f
i
n
e

A
V B =

[c z cV
z

dV
w

]w

(d)

A f
e
w

"
r
u
l
e
s
"

a
r
e

a
s

follow
s

(
f
r
o
m

m
a
t
r
i
x

r
u
l
e
s
)
:

(i) A V (13

V C
) = (A V B
)

V C
,

t
h
e

a
n
a
l
o
g
u
e

of p
a
r
t

(
b
)
.

A V (B V C
) =

a
c

í
a

bd
1

bd
v [

[a

V (x V e
)V (z V g

)

[((eV

x)
V
e

u z)
V g

xc yw v e
g

hf

eg y
w

hf

b V (y V f)1d V (w

V h
)

(
b

V y)
V f 1

(d V w
)

V h

a V
x

b
V

y
l v [ eg hfV z d V

w

(
[ a
c

bd v x

yw
D

v [
e
g

hfi (A v B
) v D
.

[
p
a
g
e
s

2
2
8
,

2
2
9
]

.
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(ii) (AV B) = (B V A).

(iii) A A (B V c) = (A A B) V (A A C) .

(iv) AV 0 = A only if each entry, a, of A is > 0.

(v) A A 0 = 0 = 0 A A only if each entry of A is > 0.

(vi) AA I= A = IAA only if each entry of A is between 0 and

1 inclusive.

(vii) A V (A) #

The following "rules" are also true, though they, are not paralleled in

matrix algebra.

(i) AAB=BAA.

(ii) A A A = A.

(iii) AV A = A.

(iv) A V (B A = (A V B) A (A V C).

(v) AV I=I only if for A =
c d

, a < 1, b < 0,
a b

c < 0, d < 1.

283
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